搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液滴在不同润湿性表面上蒸发时的动力学特性

叶学民 张湘珊 李明兰 李春曦

引用本文:
Citation:

液滴在不同润湿性表面上蒸发时的动力学特性

叶学民, 张湘珊, 李明兰, 李春曦

Dynamics of evaporating drop on heated surfaces with different wettabilities

Ye Xue-Min, Zhang Xiang-Shan, Li Ming-Lan, Li Chun-Xi
PDF
导出引用
  • 基于润滑理论,采用滑移边界条件建立了二维液滴厚度的演化模型和移动接触线动力学模型,利用数值计算方法模拟了均匀加热基底上固着液滴蒸发时的动力学特性,分析了液-气、固-气和液-固界面张力温度敏感性对壁面润湿性和液滴动态特性的影响.结果表明,液滴的运动过程受毛细力、重力、热毛细力和蒸发的影响,重力对液滴铺展起促进作用,而毛细力、热毛细力则起抑制作用;通过改变界面张力温度敏感性系数,可使液滴蒸发过程中的接触线呈现处于钉扎或部分钉扎模式,且接触线钉扎模式下的液滴存续时间低于部分钉扎模式;提高液-气与液-固界面张力温度敏感系数均可改善壁面润湿性能,加快液滴铺展速率;而增大固-气界面张力温度敏感系数则导致壁面润湿性能恶化、延缓液滴铺展过程;通过改变固-气界面张力温度敏感系数更有利于调控处于蒸发状态下的液滴运动.
    The dynamics of evaporating sessile drop on a uniformly heated, horizontal, solid substrate is considered. On the basis of lubrication theory and Navier slip condition, an evolution equation for the height of the two-dimensional drop is established. The numerical results show that the drop evolution is governed by capillary force, gravity, thermal capillary force and evaporation. Gravity exerts a promoting effect on drop spreading, while capillary force and thermal capillary force inhibit drop spreading. The typical dynamic features including contact line pinning or partial pinning modes during the drop evaporation are illustrated by changing the temperature-sensitive coefficient in the present model, and the drop lifetime of contact pinning mode is found to be shorter than that of contact line partial pinning mode. Under the same temperature-sensitive coefficient of three interfaces, the drop evolution is indicated with three typical stages: 1) spreading stage, 2) contact line pinning stage, and 3) both contact line and contact angle decreasing stage. As interface tension of liquid-gas or liquid-solid is more sensitive to temperature, the drop evolution is divided into two typical stages: 1) spreading stage and 2) contact line pinning stage. The equilibrium contact angle tends to be smaller and the substrate wettability is improved, leading to the increased spreading speed, the prolonged time of the contact line to reach pinning: the faster the evaporation rate, the shorter the lifetime of drop is. Additionally, the same effect of sensitivity of liquid-gas and liquid-solid interface tension to temperature on the wettability of substrate is observed. When the interface tension of solid-gas is more sensitive to temperature, the drop evolution is characterized in four typical stages: 1) spreading stage, 2) contact line pinning stage, 3) contact line de-pinning and constant contact angle stage, and 4) both contact line and contact angle decreasing stage. The equilibrium contact angle tends to be greater and the substrate wettability is deteriorated, leading the spreading speed to decrease. Hence, it is more effective to manipulate the drop movement in the presence of evaporation by regulating the temperature-sensitive coefficient of the solid-gas interface.
      通信作者: 李春曦, leechunxi@163.com
    • 基金项目: 国家自然科学基金(批准号:11202079)和中央高校基本科研业务费(批准号:13MS97)资助的课题.
      Corresponding author: Li Chun-Xi, leechunxi@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11202079) and the Fundamental Research Fund for the Central Universities, China (Grant No. 13MS97).
    [1]

    Saada M A, Chikh S, Tadrist L 2013 Int. J. Heat Mass Transf. 58 197

    [2]

    Li C X, Yang B C, Ye X M 2015 Chin. J. Theor. Appl. Mech. 47 71(in Chinese) [李春曦, 杨保才, 叶学民 2015 力学学报 47 71]

    [3]

    Kavehpour P, Ovryn B, Mckinley G H 2002 Colloids Surf. A 206 409

    [4]

    Semenov S, Trybala A, Agogo H, Kovalchuk N, Ortega F, Rubio R G, Starov V M, Velarde M G 2013 Langmuir 29 10028

    [5]

    Erbil H Y 2012 Adv. Colloid Interface Sci. 170 67

    [6]

    Zang D, Yu Y, Zhen C, Li X, Wu H, Geng X 2017 Adv. Colloid Interface Sci. 243 77

    [7]

    Sefiane K 2006 J. Petrol. Sci. Eng. 51 238

    [8]

    Ye X M, Li Y K, Li C X 2016 Acta Phys. Sin. 65 104704(in Chinese) [叶学民, 李永康, 李春曦 2016 65 104704]

    [9]

    Zhu J Y, Duan Y Y, Wang X D, Min Q 2014 CIESC J. 65 765(in Chinese) [朱君悦, 段远源, 王晓东, 闵琪 2014 化工学报 65 765]

    [10]

    Sefiane K 2004 J. Colloid Interface Sci. 272 411

    [11]

    Mollaret R, Sefiane K, Christy J R E, Veyret D 2004 Chem. Eng. Res. Des. 82 471

    [12]

    Kuznetsov G V, Feoktistov D V, Orlova E G 2016 Thermophys. Aeromech. 23 17

    [13]

    Kiper I, Fulcrand R, Pirat C, Simon G, Stutz B, Ramos S M M 2015 Colloids Surf. A 482 617

    [14]

    Lopes M C, Bonaccurso E 2012 Soft Matter 8 7875

    [15]

    Gatapova E Y, Semenov A A, Zaitsev D V, Kabov O A 2014 Colloids Surf. A 441 776

    [16]

    Guan J H, Wells G G, Xu B, McHale G, Wood D 2015 Langmuir 31 11781

    [17]

    Kuznetsov G V, Feoktistov D V, Orlova E G, Batishcheva K A 2016 Colloid J. 78 335

    [18]

    Zhang W B, Liao L G, Yu T X, Ji A L 2013 Acta Phys. Sin. 62 196102(in Chinese) [张文彬, 廖龙光, 于同旭, 纪爱玲 2013 62 196102]

    [19]

    Ajaev V S, Gambaryan-Roisman T, Stephan P 2010 Colloid Interface Sci. 342 550

    [20]

    Karapetsas G, Sahu K C, Matar O K 2016 Langmuir 32 6871

    [21]

    Bouchenna C, Saada M A, Chikh S, Tadrist L 2017 Int. J. Heat Mass Transf. 109 482

    [22]

    Amini A, Homsy G M 2017 Phys. Rev. Fluids 2 043603

    [23]

    Zhao Y P 2012 Phys. Mech. Surf. Interface (Beijing: Science Press) pp185-186 (in Chinese) [赵亚溥 2012 表面与界面物理力学(北京: 科学出版社)第185页186页]

    [24]

    Karapetsas G, Sahu K C, Matar O K 2013 Langmuir 29 8892

    [25]

    Craster R V, Matar O K 2000 J. Fluid Mech. 425 235

  • [1]

    Saada M A, Chikh S, Tadrist L 2013 Int. J. Heat Mass Transf. 58 197

    [2]

    Li C X, Yang B C, Ye X M 2015 Chin. J. Theor. Appl. Mech. 47 71(in Chinese) [李春曦, 杨保才, 叶学民 2015 力学学报 47 71]

    [3]

    Kavehpour P, Ovryn B, Mckinley G H 2002 Colloids Surf. A 206 409

    [4]

    Semenov S, Trybala A, Agogo H, Kovalchuk N, Ortega F, Rubio R G, Starov V M, Velarde M G 2013 Langmuir 29 10028

    [5]

    Erbil H Y 2012 Adv. Colloid Interface Sci. 170 67

    [6]

    Zang D, Yu Y, Zhen C, Li X, Wu H, Geng X 2017 Adv. Colloid Interface Sci. 243 77

    [7]

    Sefiane K 2006 J. Petrol. Sci. Eng. 51 238

    [8]

    Ye X M, Li Y K, Li C X 2016 Acta Phys. Sin. 65 104704(in Chinese) [叶学民, 李永康, 李春曦 2016 65 104704]

    [9]

    Zhu J Y, Duan Y Y, Wang X D, Min Q 2014 CIESC J. 65 765(in Chinese) [朱君悦, 段远源, 王晓东, 闵琪 2014 化工学报 65 765]

    [10]

    Sefiane K 2004 J. Colloid Interface Sci. 272 411

    [11]

    Mollaret R, Sefiane K, Christy J R E, Veyret D 2004 Chem. Eng. Res. Des. 82 471

    [12]

    Kuznetsov G V, Feoktistov D V, Orlova E G 2016 Thermophys. Aeromech. 23 17

    [13]

    Kiper I, Fulcrand R, Pirat C, Simon G, Stutz B, Ramos S M M 2015 Colloids Surf. A 482 617

    [14]

    Lopes M C, Bonaccurso E 2012 Soft Matter 8 7875

    [15]

    Gatapova E Y, Semenov A A, Zaitsev D V, Kabov O A 2014 Colloids Surf. A 441 776

    [16]

    Guan J H, Wells G G, Xu B, McHale G, Wood D 2015 Langmuir 31 11781

    [17]

    Kuznetsov G V, Feoktistov D V, Orlova E G, Batishcheva K A 2016 Colloid J. 78 335

    [18]

    Zhang W B, Liao L G, Yu T X, Ji A L 2013 Acta Phys. Sin. 62 196102(in Chinese) [张文彬, 廖龙光, 于同旭, 纪爱玲 2013 62 196102]

    [19]

    Ajaev V S, Gambaryan-Roisman T, Stephan P 2010 Colloid Interface Sci. 342 550

    [20]

    Karapetsas G, Sahu K C, Matar O K 2016 Langmuir 32 6871

    [21]

    Bouchenna C, Saada M A, Chikh S, Tadrist L 2017 Int. J. Heat Mass Transf. 109 482

    [22]

    Amini A, Homsy G M 2017 Phys. Rev. Fluids 2 043603

    [23]

    Zhao Y P 2012 Phys. Mech. Surf. Interface (Beijing: Science Press) pp185-186 (in Chinese) [赵亚溥 2012 表面与界面物理力学(北京: 科学出版社)第185页186页]

    [24]

    Karapetsas G, Sahu K C, Matar O K 2013 Langmuir 29 8892

    [25]

    Craster R V, Matar O K 2000 J. Fluid Mech. 425 235

  • [1] 白璞, 王登甲, 刘艳峰. 润湿性影响薄液膜沸腾传热的分子动力学研究.  , 2024, 73(9): 090201. doi: 10.7498/aps.73.20232026
    [2] 贺华丹, 钟琦超, 解文军. 声悬浮条件下双水相液滴的蒸发与相分离.  , 2024, 73(3): 034304. doi: 10.7498/aps.73.20230963
    [3] 王浩, 徐进良. 油面上相邻Leidenfrost液滴的相互作用及运动机制.  , 2023, 72(5): 054401. doi: 10.7498/aps.72.20221822
    [4] 李春曦, 马成, 叶学民. 薄液滴在润湿性受限轨道上的热毛细迁移特性.  , 2023, 72(2): 024702. doi: 10.7498/aps.72.20221562
    [5] 李文, 马骁婧, 徐进良, 王艳, 雷俊鹏. 纳米结构及浸润性对液滴润湿行为的影响.  , 2021, 70(12): 126101. doi: 10.7498/aps.70.20201584
    [6] 彭家略, 郭浩, 尤天涯, 纪献兵, 徐进良. 液滴碰撞Janus颗粒球表面的行为特征.  , 2021, 70(4): 044701. doi: 10.7498/aps.70.20201358
    [7] 杨亚晶, 梅晨曦, 章旭东, 魏衍举, 刘圣华. 液滴撞击液膜的穿越模式及运动特性.  , 2019, 68(15): 156101. doi: 10.7498/aps.68.20190604
    [8] 叶学民, 张湘珊, 李明兰, 李春曦. 自润湿流体液滴的热毛细迁移特性.  , 2018, 67(18): 184704. doi: 10.7498/aps.67.20180660
    [9] 刘燕文, 王小霞, 陆玉新, 田宏, 朱虹, 孟鸣凤, 赵丽, 谷兵. 用于电真空器件的金属材料蒸发特性.  , 2016, 65(6): 068502. doi: 10.7498/aps.65.068502
    [10] 熊其玉, 董磊, 焦云龙, 刘小君, 刘焜. 应用激光蚀刻不同微织构表面的润湿性.  , 2015, 64(20): 206101. doi: 10.7498/aps.64.206101
    [11] 王陶, 李俊杰, 王锦程. 界面润湿性及固相体积分数对颗粒粗化动力学影响的相场法研究.  , 2013, 62(10): 106402. doi: 10.7498/aps.62.106402
    [12] 赵宁, 黄明亮, 马海涛, 潘学民, 刘晓英. 液态Sn-Cu钎料的黏滞性与润湿行为研究.  , 2013, 62(8): 086601. doi: 10.7498/aps.62.086601
    [13] 姚祎, 周哲玮, 胡国辉. 有结构壁面上液滴运动特征的耗散粒子动力学模拟.  , 2013, 62(13): 134701. doi: 10.7498/aps.62.134701
    [14] 张文彬, 廖龙光, 于同旭, 纪爱玲. 溶液液滴蒸发变干的环状沉积.  , 2013, 62(19): 196102. doi: 10.7498/aps.62.196102
    [15] 郭加宏, 戴世强, 代钦. 液滴冲击液膜过程实验研究.  , 2010, 59(4): 2601-2609. doi: 10.7498/aps.59.2601
    [16] 石自媛, 胡国辉, 周哲玮. 润湿性梯度驱动液滴运动的格子Boltzmann模拟.  , 2010, 59(4): 2595-2600. doi: 10.7498/aps.59.2595
    [17] 王晓冬, 董 鹏, 陈胜利, 仪桂云. 亚微米聚苯乙烯微球在气-液界面组装的机理研究.  , 2007, 56(3): 1831-1836. doi: 10.7498/aps.56.1831
    [18] 王晓冬, 董 鹏, 陈胜利, 仪桂云. 亚微米聚苯乙烯微球在气-液界面组装的机理研究.  , 2007, 56(5): 3017-3021. doi: 10.7498/aps.56.3017
    [19] 何国良, 贺延文, 赵志刚, 刘 楣. 无序超导体磁通运动的两次退钉扎效应和重新进入超导相.  , 2006, 55(2): 839-843. doi: 10.7498/aps.55.839
    [20] 王超英, 翟光杰, 吴兰生, 麦振洪, 李 宏, 张海峰, 丁炳哲. 重力对GaSb熔滴和液/固界面交互作用的影响.  , 2000, 49(10): 2094-2100. doi: 10.7498/aps.49.2094
计量
  • 文章访问数:  7563
  • PDF下载量:  386
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-22
  • 修回日期:  2018-02-16
  • 刊出日期:  2018-06-05

/

返回文章
返回
Baidu
map