搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

通过光致还原调制氧化石墨烯寿命并用于微纳图形制备

乔志星 秦成兵 贺文君 弓亚妮 张晓荣 张国峰 陈瑞云 高岩 肖连团 贾锁堂

引用本文:
Citation:

通过光致还原调制氧化石墨烯寿命并用于微纳图形制备

乔志星, 秦成兵, 贺文君, 弓亚妮, 张晓荣, 张国峰, 陈瑞云, 高岩, 肖连团, 贾锁堂

Lifetime modulation of graphene oxide film by laser direct writing for the fabrication of micropatterns

Qiao Zhi-Xing, Qin Cheng-Bing, He Wen-Jun, Gong Ya-Ni, Xiao Lian-Tuan, Zhang Guo-Feng, Chen Rui-Yun, Gao Yan, Jia Suo-Tang,
PDF
导出引用
  • 氧化石墨烯因其宽带可调谐的荧光发射特性已被广泛应用于荧光成像、金属离子高灵敏检测和光电器件的制备.相比于荧光强度,氧化石墨烯荧光寿命不受材料厚度和激发功率的影响,具有更为稳定和均一的特性.本文研究了在激光还原过程中氧化石墨烯荧光寿命逐渐减小的变化行为,发现了长寿命sp3杂化结构向短寿命sp2杂化结构的转变.通过精确控制还原时间,结合激光直写技术,在单层氧化石墨烯薄膜上实现了二维码、条形码、图形和数字等微纳图形的制备,还在多层氧化石墨烯薄膜结构上获得了多寿命多层微纳图形.这种微纳图形的制备具有灵活无掩膜、高对比和多模式的特点,可用于高密度光学存储、信息显示和光电器件制备等诸多领域.
    The strong, broad and tunable fluorescence emission of graphene oxide (GO) has shown the exciting optical applications in many areas, such as fluorescence imaging in living cell, high sensitive detection of heavy metal ions, and the fabrication of optoelectronic devices. However, the intrinsic heterogeneous fluorescence intensity resulting from the variability in the power density of excitation laser and the non-uniform thickness of GO film, hinders its further applications in the micropatterning, information storage and display technology, which requires homogeneous fluorescence emission. In contrast to the fluorescence intensity, the fluorescence lifetime of GO is determined by the intrinsic nature of chromophores, rather than the film thickness or excitation power density. Here we report that the fluorescence lifetime is homogeneous for GO film, which eliminates the anisotropic optical properties of GO film. By reducing the GO film through the irradiation from a 405 nm continuous-wave laser at a certain power density on a home-built scanning confocal microscope, we find that the lifetime can be precisely modulated by controlling the duration of laser irradiation. It is determined that the lifetime gradually decreases with the increase of duration. As reported in the previous researches, the GO fluorescence originates from the graphene-like confined sp2 clusters and sp3 domains consisting of oxygen-containing functional groups, where the lifetime of sp3 domain is about 1.4 ns, and that of sp2 domain is 0.14 ns. During the photoreduction, the long-lived sp3 domains will decrease or convert into short-lived sp2 domains, resulting in the decrease of lifetime. Hence, by controlling the reduction degree or the ratio of the two domains, the lifetime of GO film can be determined. More importantly, the lifetime distributions of the reduction areas are very narrow, leading to a relatively homogenous background. The precise manipulation of lifetime can be used to fabricate micropatterns with high contrast. Combining with laser direct writing with features of maskless, facile processing ability and high spatial resolution, many versatile micropatterns, such as quick response code, barcode, graphic, alphabet, and numbers can be readily created based on the modulation of fluorescence lifetime. By using three optimized durations of laser irradiation, three distributions with narrow widths are obtained. Based on this processing, the micropatterns with three colors are determined, which indicates that the multimode optical recording can be created on the GO film based on the modulation of fluorescence lifetime. Furthermore, the multilayer micropatterns are also created. The robust and versatile micropatterns with film-thickness and excitation-power-independent features show their promising applications in electronics, photonics, display technology and information storage.
      通信作者: 秦成兵, chbqin@sxu.edu.cn;xlt@sxu.edu.cn ; 肖连团, chbqin@sxu.edu.cn;xlt@sxu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:U1510133,61527824,11374196,61675119,11434007,1504216,61605104)、长江学者与创新团队发展计划(批准号:IRT13076)和山西省"1331工程"重点学科建设资助的课题.
      Corresponding author: Qin Cheng-Bing, chbqin@sxu.edu.cn;xlt@sxu.edu.cn ; Jia Suo-Tang, chbqin@sxu.edu.cn;xlt@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U1510133, 61527824, 11374196, 61675119, 11434007, 1504216, 61605104), the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT13076), and the 1331KSC.
    [1]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385

    [2]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2008 Solid State Commun. 146 351

    [3]

    Stoller M D, Park S, Zhu Y, An J, Ruoff R S 2008 Nano Lett. 8 3498

    [4]

    Bonaccorso F, Sun Z, Hasan T, Ferrari A C 2010 Nat. Photon. 4 611

    [5]

    Bao Q, Zhang H, Wang B, Ni Z, Lim C H Y X, Wang Y, Tang D Y, Loh K P 2011 Nat. Photon. 5 411

    [6]

    Novoselov K S, Fal'ko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192

    [7]

    Wang W R, Zhou Y X, Li T, Wang Y L, Xie X M 2012 Acta Phys. Sin. 61 038702 (in Chinese) [王文荣, 周玉修, 李铁, 王跃林, 谢晓明 2012 61 038702]

    [8]

    Senyuk B, Behabtu N, Martinez A, Lee T, Tsentalovich D E, Ceriotti G, Tour J M, Pasquali M, Smalyukh I I 2015 Nat. Commun. 6 7157

    [9]

    Zhang Y, Guo L, Wei S, He Y, Xia H, Chen Q, Sun H B, Xiao F S 2010 Nano Today 5 15

    [10]

    Kymakis E, Petridis C, Anthopoulos T D, Stratakis E 2014 IEEE J. Sel. Top. Quantum Electron. 20 10

    [11]

    Eda G, Fanchini G, Chhowalla M 2008 Nat. Nanotech. 3 270

    [12]

    Eda G, Chhowalla M 2010 Adv. Mater. 22 2392

    [13]

    Furio A, Landi G, Altavilla C, Sofia D, Iannace S, Sorrentino A, Neitzert H C 2017 Nanotechnology 28 054003

    [14]

    Marquez C, Rodriguez N, Ruiz R, Gamiz F 2016 RSC Adv. 6 46231

    [15]

    Fatt Teoh H, Tao Y, Soon Tok E, Wei Ho G, Haur Sow C 2012 J. Appl. Phys. 112 064309

    [16]

    Wei Z, Wang D, Kim S, Kim S Y, Hu Y, Yakes M K, Laracuente A R, Dai Z, Marder S R, Berger C, King W P, de Heer W A, Sheehan P E, Riedo E 2010 Science 328 1373

    [17]

    He Y, Zhu L, Liu Y, Ma J N, Han D D, Jiang H B, Han B, Ding H, Zhang Y L 2016 IEEE Photon. Technol. Lett. 28 1996

    [18]

    Chien C T, Li S S, Lai W J, Yeh Y C, Chen H A, Chen I S, Chen L C, Chen K H, Nemoto T, Isoda S, Chen M, Fujita T, Eda G, Yamaguchi H, Chhowalla M, Chen C W 2012 Angew. Chem. 51 6662

    [19]

    Loh K P, Bao Q, Eda G, Chhowalla M 2010 Nat. Chem. 2 1015

    [20]

    Sun X, Liu Z, Welsher K, Robinson J T, Goodwin A, Zaric S, Dai H 2008 Nano Res. 1 203

    [21]

    Huang J, Gao X, Jia J, Kim J K, Li Z 2014 Anal. Chem. 86 3209

    [22]

    Wang X, Tian H, Mohammad M A, Li C, Wu C, Yang Y, Ren T L 2015 Nat. Commun. 6 7767

    [23]

    Sokolov D A, Morozov Y V, McDonald M P, Vietmeyer F, Hodak J H, Kuno M 2014 Nano Lett. 14 3172

    [24]

    Tongay S, Suh J, Ataca C, Fan W, Luce A, Kang J S, Liu J, Ko C, Raghunathanan R, Zhou J, Ogletree F, Li J, Grossman J C, Wu J 2013 Sci. Rep. 3 2657

    [25]

    He W, Qin C, Qiao Z, Zhang G, Xiao L, Jia S 2016 Carbon 109 264

    [26]

    Li B, Zhang G F, Jing M Y, Chen R Y, Qin C B, Gao Y, Xiao L T, Jia S T 2016 Acta Phys. Sin. 65 218201 (in Chinese) [李斌, 张国峰, 景明勇, 陈瑞云, 秦成兵, 高岩, 肖连团, 贾锁堂 2016 65 218201]

    [27]

    Gao Y, Qiao Z X, Qin C B, Chen R Y, Zhang G F, Xiao L T, Jia S T 2015 Sci. Sin.-Phys. Mech. Astron. 45 024201 (in Chinese) [高岩, 乔志星, 秦成兵, 陈瑞云, 张国峰, 肖连团, 贾锁堂 2015 中国科学:物理学力学天文学 45 024201]

    [28]

    Liu Z B, Zhao X, Zhang X L, Yan X Q, Wu Y P, Chen Y S, Tian J G 2011 J. Chem. Phys. Lett. 2 1972

    [29]

    Zhang X F, Shao X N, Liu S P 2012 J. Phys. Chem. A 116 7308

  • [1]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385

    [2]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2008 Solid State Commun. 146 351

    [3]

    Stoller M D, Park S, Zhu Y, An J, Ruoff R S 2008 Nano Lett. 8 3498

    [4]

    Bonaccorso F, Sun Z, Hasan T, Ferrari A C 2010 Nat. Photon. 4 611

    [5]

    Bao Q, Zhang H, Wang B, Ni Z, Lim C H Y X, Wang Y, Tang D Y, Loh K P 2011 Nat. Photon. 5 411

    [6]

    Novoselov K S, Fal'ko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192

    [7]

    Wang W R, Zhou Y X, Li T, Wang Y L, Xie X M 2012 Acta Phys. Sin. 61 038702 (in Chinese) [王文荣, 周玉修, 李铁, 王跃林, 谢晓明 2012 61 038702]

    [8]

    Senyuk B, Behabtu N, Martinez A, Lee T, Tsentalovich D E, Ceriotti G, Tour J M, Pasquali M, Smalyukh I I 2015 Nat. Commun. 6 7157

    [9]

    Zhang Y, Guo L, Wei S, He Y, Xia H, Chen Q, Sun H B, Xiao F S 2010 Nano Today 5 15

    [10]

    Kymakis E, Petridis C, Anthopoulos T D, Stratakis E 2014 IEEE J. Sel. Top. Quantum Electron. 20 10

    [11]

    Eda G, Fanchini G, Chhowalla M 2008 Nat. Nanotech. 3 270

    [12]

    Eda G, Chhowalla M 2010 Adv. Mater. 22 2392

    [13]

    Furio A, Landi G, Altavilla C, Sofia D, Iannace S, Sorrentino A, Neitzert H C 2017 Nanotechnology 28 054003

    [14]

    Marquez C, Rodriguez N, Ruiz R, Gamiz F 2016 RSC Adv. 6 46231

    [15]

    Fatt Teoh H, Tao Y, Soon Tok E, Wei Ho G, Haur Sow C 2012 J. Appl. Phys. 112 064309

    [16]

    Wei Z, Wang D, Kim S, Kim S Y, Hu Y, Yakes M K, Laracuente A R, Dai Z, Marder S R, Berger C, King W P, de Heer W A, Sheehan P E, Riedo E 2010 Science 328 1373

    [17]

    He Y, Zhu L, Liu Y, Ma J N, Han D D, Jiang H B, Han B, Ding H, Zhang Y L 2016 IEEE Photon. Technol. Lett. 28 1996

    [18]

    Chien C T, Li S S, Lai W J, Yeh Y C, Chen H A, Chen I S, Chen L C, Chen K H, Nemoto T, Isoda S, Chen M, Fujita T, Eda G, Yamaguchi H, Chhowalla M, Chen C W 2012 Angew. Chem. 51 6662

    [19]

    Loh K P, Bao Q, Eda G, Chhowalla M 2010 Nat. Chem. 2 1015

    [20]

    Sun X, Liu Z, Welsher K, Robinson J T, Goodwin A, Zaric S, Dai H 2008 Nano Res. 1 203

    [21]

    Huang J, Gao X, Jia J, Kim J K, Li Z 2014 Anal. Chem. 86 3209

    [22]

    Wang X, Tian H, Mohammad M A, Li C, Wu C, Yang Y, Ren T L 2015 Nat. Commun. 6 7767

    [23]

    Sokolov D A, Morozov Y V, McDonald M P, Vietmeyer F, Hodak J H, Kuno M 2014 Nano Lett. 14 3172

    [24]

    Tongay S, Suh J, Ataca C, Fan W, Luce A, Kang J S, Liu J, Ko C, Raghunathanan R, Zhou J, Ogletree F, Li J, Grossman J C, Wu J 2013 Sci. Rep. 3 2657

    [25]

    He W, Qin C, Qiao Z, Zhang G, Xiao L, Jia S 2016 Carbon 109 264

    [26]

    Li B, Zhang G F, Jing M Y, Chen R Y, Qin C B, Gao Y, Xiao L T, Jia S T 2016 Acta Phys. Sin. 65 218201 (in Chinese) [李斌, 张国峰, 景明勇, 陈瑞云, 秦成兵, 高岩, 肖连团, 贾锁堂 2016 65 218201]

    [27]

    Gao Y, Qiao Z X, Qin C B, Chen R Y, Zhang G F, Xiao L T, Jia S T 2015 Sci. Sin.-Phys. Mech. Astron. 45 024201 (in Chinese) [高岩, 乔志星, 秦成兵, 陈瑞云, 张国峰, 肖连团, 贾锁堂 2015 中国科学:物理学力学天文学 45 024201]

    [28]

    Liu Z B, Zhao X, Zhang X L, Yan X Q, Wu Y P, Chen Y S, Tian J G 2011 J. Chem. Phys. Lett. 2 1972

    [29]

    Zhang X F, Shao X N, Liu S P 2012 J. Phys. Chem. A 116 7308

  • [1] 李醒龙, 赵浩宇, 武文杰, 蒋卫峰, 郑加金, 张祖兴, 余柯涵, 韦玮. 氧化石墨烯修饰倾斜光纤光栅10–12级重金属离子传感.  , 2022, 71(5): 050702. doi: 10.7498/aps.71.20211315
    [2] 陆海林, 段芳莉. 硅基材料界面石墨烯片层运动行为及其摩擦特性.  , 2021, 70(14): 143101. doi: 10.7498/aps.70.20210088
    [3] 陈超, 段芳莉. 氧化石墨烯褶皱行为与结构的分子模拟研究.  , 2020, 69(19): 193102. doi: 10.7498/aps.69.20200651
    [4] 林启民, 张霞, 芦启超, 罗彦彬, 崔建功, 颜鑫, 任晓敏, 黄雪. 氧化石墨烯的结构稳定性及硝酸催化作用的第一性原理研究.  , 2019, 68(24): 247302. doi: 10.7498/aps.68.20191304
    [5] 张强强, 胡建勇, 景明勇, 李斌, 秦成兵, 李耀, 肖连团, 贾锁堂. 单光子调制频谱用于量子点荧光寿命动力学的研究.  , 2019, 68(1): 017803. doi: 10.7498/aps.68.20181797
    [6] 莫佳伟, 裘银伟, 伊若冰, 吴俊, 王志坤, 赵丽华. 基于温度的亚稳态氧化石墨烯性能.  , 2019, 68(15): 156501. doi: 10.7498/aps.68.20190670
    [7] 孙锐, 陈晨, 令维军, 张亚妮, 康翠萍, 许强. 基于氧化石墨烯的瓦级调Q锁模Tm: LuAG激光器.  , 2019, 68(10): 104207. doi: 10.7498/aps.68.20182224
    [8] 张心正, 夏峰, 许京军. 激光超衍射加工机理与研究进展.  , 2017, 66(14): 144207. doi: 10.7498/aps.66.144207
    [9] 陈浩, 彭同江, 刘波, 孙红娟, 雷德会. 还原温度对氧化石墨烯结构及室温下H2敏感性能的影响.  , 2017, 66(8): 080701. doi: 10.7498/aps.66.080701
    [10] 曹海燕, 毕恒昌, 谢骁, 苏适, 孙立涛. 氧化石墨烯基功能纸的简易制备和染料吸附性能.  , 2016, 65(14): 146802. doi: 10.7498/aps.65.146802
    [11] 林文强, 徐斌, 陈亮, 周峰, 陈均朗. 双酚A在氧化石墨烯表面吸附的分子动力学模拟.  , 2016, 65(13): 133102. doi: 10.7498/aps.65.133102
    [12] 黄诗盛, 王勇刚, 李会权, 林荣勇, 闫培光. 氧化石墨烯被动锁模掺镱光纤激光器多脉冲现象的实验研究.  , 2014, 63(8): 084202. doi: 10.7498/aps.63.084202
    [13] 沈应龙, 唐春梅, 盛秋春, 刘双, 李文涛, 王龙飞, 陈丹平. 铈铕共掺高钆氧化物玻璃的发光性能及能量传递效应.  , 2013, 62(11): 117803. doi: 10.7498/aps.62.117803
    [14] 陆晶晶, 冯苗, 詹红兵. 氧化石墨烯/壳聚糖复合薄膜材料的制备及其非线性光限幅效应的研究.  , 2013, 62(1): 014204. doi: 10.7498/aps.62.014204
    [15] 高岩, 陈瑞云, 吴瑞祥, 张国锋, 肖连团, 贾锁堂. 电场诱导氧化石墨烯的极化动力学特性研究.  , 2013, 62(23): 233601. doi: 10.7498/aps.62.233601
    [16] 万文博, 华灯鑫, 乐静, 刘美霞, 曹宁. 激光诱导叶绿素荧光寿命的测量及其特性分析.  , 2013, 62(19): 190601. doi: 10.7498/aps.62.190601
    [17] 丁 君, 杨秋红, 唐在峰, 徐 军, 苏良碧. Er3+/Yb3+共掺的氧化镧钇透明陶瓷的光谱性能研究.  , 2007, 56(4): 2207-2211. doi: 10.7498/aps.56.2207
    [18] 林子扬, 付 哲, 刘立新, 胡 涛, 屈军乐, 郭宝平, 牛憨笨. 双光子阵列点激发同时多维荧光信息的处理.  , 2006, 55(12): 6701-6707. doi: 10.7498/aps.55.6701
    [19] 苗 壮, 李善锋, 张庆瑜. Y共掺对掺Er硅酸盐玻璃光致荧光及荧光寿命的影响.  , 2006, 55(8): 4321-4326. doi: 10.7498/aps.55.4321
    [20] 王茜蒨, 魏光辉. 机油类产品激光诱导荧光时间特性的研究.  , 2002, 51(5): 1031-1034. doi: 10.7498/aps.51.1031
计量
  • 文章访问数:  6145
  • PDF下载量:  194
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-29
  • 修回日期:  2018-01-03
  • 刊出日期:  2019-03-20

/

返回文章
返回
Baidu
map