搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于标架场理论的完整系统Boltzmann-Hamel方程简化方法研究

张素侠 陈纬庭

引用本文:
Citation:

基于标架场理论的完整系统Boltzmann-Hamel方程简化方法研究

张素侠, 陈纬庭

Method of simplifying Boltzmann-Hamel equation in holonomic system with frame field theory

Zhang Su-Xia, Chen Wei-Ting
PDF
导出引用
  • 研究选取合适的准坐标简化完整系统Boltzmann-Hamel方程的问题.基于流形上的标架场理论,指出了定常构形空间中的准速度与标架场的联系,并从几何不变性的角度上导出了完整系统的Boltzmann-Hamel方程.证明了对于任意广义力为零的均匀构形空间、广义力不为零的零曲率构形空间,Boltzmann-Hamel方程均可以化简为可积分的形式,同时给出具体的简化方法并举例说明本方法的适用性.本文方法为寻找运动方程的解析解提供了一条新途径.
    Boltzmann-Hamel equation using quasi-velocities as variable quantities instead of generalized-velocities,is an extending form of the classical Lagrange equation.It is widely used for establishing the motion equations in constrained mechanical systems because of its unique structure.The classical method to solve Boltzmann-Hamel equation includes two steps.The first step is to substitute the relationship between the quasi-velocities and generalized-velocities into the equation to establish the second order equation relating to generalized-coordinates.The second step is to search for the analytical solutions using the method of separating variables or the method of Lie groups.However this method is not very effective in practice.In fact,the majority of studies only focus on the similarity between the quasi-coordinate form and the linear non-holonomic constraint form,without considering the effects of the selection of quasi-coordinates on the Boltzmann-Hamel equation.Because the quasi-coordinates in Boltzmann-Hamel equation can be selected freely,the problem of simplifying the Boltzmann-Hamel equation in holonomic system by choosing the appropriate quasi-coordinates is studied in this paper.Using the method of geometrodynamic analysis,the relationship between quasi-coordinates in the time-invariant configuration space and frame field is indicated based on the frame field theory of manifolds.The Boltzmann-Hamel equation in holonomic system is then derived from the tangle of geometric invariance.It differs from the ordinary methods,such as the action principle or d'Alembert's method.It is demonstrated that Boltzmann-Hamel equation can be simplified into an integrable form in homogenous configuration space with zero generalized-force or zero curvature configuration space with non-zero generalized-force.The process of simplifying the equation is provided in detail and the feasibility of this method is verified through two examples.The result in this paper reveals the close link between the intrinsic curvature of the time-invariant configuration space and the structure of Boltzmann-Hamel equation.The simplest form of Boltzmann-Hamel equation under the generalized-coordinate bases field (Lagrange equation) corresponds to the configuration space of zero curvature,and the simplest form of Boltzmann-Hamel equation under the frame field corresponds to the homogenous configuration space (more often,constant curvature space).For the complex motion equations,it should be transformed first into Boltzmann-Hamel equation,then the intrinsic curvature of the time-invariant configuration space will be calculated.If the conditions mentioned in this paper are satisfied, the Boltzmann-Hamel equation can be simplified into the simplest form by choosing appropriate quasi-coordinates,from which,the analytical solutions can be obtained,furthermore,this frame field derived by the appropriate quasi-coordinates can be used as a tool to study the symmetry and the conserved quantity of this holonomic mechanical system.The results in this paper provide a new way to search for the analytical solution of motion equations.
      通信作者: 张素侠, zhangsux@tju.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51479136,51009107)和天津市自然科学基金(批准号:17JCYBJC18700)资助的课题.
      Corresponding author: Zhang Su-Xia, zhangsux@tju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51479136, 51009107) and the Natural Science Foundation of Tianjin, China (Grant No. 17JCYBJC18700).
    [1]

    Boltzmann L 1902 Sitz. Math. Natur. Akad. Wiss. B 11 1603

    [2]

    Hamel G 1904 Math. Phys. 50 1

    [3]

    Hamel G 1938 Art. Sitz. Math. Ges. 37 4

    [4]

    Tang C L, Shi R C 1989 J. Beijing. Inst. Tech. 9 35 (in Chinese) [唐传龙, 史荣昌 1989 北京理工大学学报 9 35]

    [5]

    Qiu R 1997 Appl. Math. Mech. 18 1033 (in Chinese) [邱荣 1997 应用数学和力学 18 1033]

    [6]

    Lü Z Q 1994 Jiangxi Sci. 12 195 (in Chinese) [吕哲勤 1994 江西科学 12 195]

    [7]

    Zhou R L, Chen L Q 1993 J. Anshan. Ins. I. S. Tech. 16 46 (in Chinese) [周瑞礼, 陈立群 1993 鞍山钢铁学院学报 16 46]

    [8]

    Zhang J F, Zhang H Z 1990 J. Zhejiang Norm. Univ. (Nat. Sci. Ed.) 13 61 (in Chinese) [张解放, 张洪忠 1990 浙江师范大学学报(自然科学版) 13 61]

    [9]

    Zhang Y, Wu R H, Mei F X 1999 Shanghai J. Mech. 20 196 (in Chinese) [张毅, 吴润衡, 梅凤翔 1999 上海力学 20 196]

    [10]

    Mei F X 1985 The Foundations of Mechanics of Nonholonomic System (Beijing: Beijing Institute of Technology Press) pp87-89 (in Chinese) [梅凤翔 1985 非完整系统力学基础 (北京: 北京工业学院出版社) 第87–89页]

    [11]

    Zhang J F 1990 Huanghuai. J. 6 13 (in Chinese) [张解放 1990 黄淮学刊 6 13]

    [12]

    Fu J L, Liu R W, Mei F X 1998 J. Beijing Inst. Tech. 7 215

    [13]

    Fu J L, Liu R W 2000 Acta Math. Sci. 20 63 (in Chinese) [傅景礼, 刘荣万 2000 数学 20 63]

    [14]

    Fu J L, Chen L Q 2004 The Progress of Research for Mathematics Mechanics Physics and High New Technology (Vol. 2004 (10)) (Chengdu: Southwest Jiaotong University Press) pp124-132 (in Chinese) [傅景礼, 陈立群 2004 数学·力学·物理学·高新技术研究进展 2004 (10) 卷 (成都:西南交通大学出版社) 第124–132页]

    [15]

    Xu X J, Mei F X 2005 Acta Phys. Sin. 54 5521 (in Chinese) [许学军, 梅凤翔 2005 54 5521]

    [16]

    Xue Y, Liu Y Z, Chen L Q 2006 Acta Phys. Sin. 55 3845 (in Chinese) [薛纭, 刘延柱, 陈立群 2006 55 3845]

    [17]

    Zhang Q, Liu Z B, Cai Y 2008 Chin. J. Aeronaut. 21 471 (in Chinese) [战强, 刘增波, 蔡尧 2008 中国航空学报 21 471]

    [18]

    Xie J F, Pang S, Zou J T, Li G F 2012 Acta Phys. Sin. 61 230201 (in Chinese) [谢加芳, 庞硕, 邹杰涛, 李国富 2012 61 230201]

    [19]

    Jarzebowska E M 2015 Selected Papers from CSNDD Agadir, Morocco, May 21-23, 2014 p167

    [20]

    Arnold V I (translated by Qi M Y) 2006 Mathematical Methods of Classical Mechanics (4th Ed.) (Beijing: Higher Education Press) pp59-69 (in Chinese) [阿诺尔德 著 (齐民友 译) 2006 经典力学的数学方法(第四版) (北京:高等教育出版社) 第59–69页]

    [21]

    Chern S S, Chen W H 2001 Lectures on Differential Geometry (2nd Ed.) (Beijing: Peking University Press) pp30-38 (in Chinese) [陈省身, 陈维桓 2001 微分几何讲义(第二版) (北京:北京大学出版社) 第30–38页]

    [22]

    Landau L D, Lifshitz E M (translated by Lu X, Ren L, Yuan B N) 2012 The Classical Theory of Fields (8th Ed.) (Beijing: Higher Education Press) p426 (in Chinese) [朗道, 栗弗席兹 (鲁欣, 任朗, 袁炳南 译) 2012 场论(第八版) (北京:高等教育出版社) 第426页]

  • [1]

    Boltzmann L 1902 Sitz. Math. Natur. Akad. Wiss. B 11 1603

    [2]

    Hamel G 1904 Math. Phys. 50 1

    [3]

    Hamel G 1938 Art. Sitz. Math. Ges. 37 4

    [4]

    Tang C L, Shi R C 1989 J. Beijing. Inst. Tech. 9 35 (in Chinese) [唐传龙, 史荣昌 1989 北京理工大学学报 9 35]

    [5]

    Qiu R 1997 Appl. Math. Mech. 18 1033 (in Chinese) [邱荣 1997 应用数学和力学 18 1033]

    [6]

    Lü Z Q 1994 Jiangxi Sci. 12 195 (in Chinese) [吕哲勤 1994 江西科学 12 195]

    [7]

    Zhou R L, Chen L Q 1993 J. Anshan. Ins. I. S. Tech. 16 46 (in Chinese) [周瑞礼, 陈立群 1993 鞍山钢铁学院学报 16 46]

    [8]

    Zhang J F, Zhang H Z 1990 J. Zhejiang Norm. Univ. (Nat. Sci. Ed.) 13 61 (in Chinese) [张解放, 张洪忠 1990 浙江师范大学学报(自然科学版) 13 61]

    [9]

    Zhang Y, Wu R H, Mei F X 1999 Shanghai J. Mech. 20 196 (in Chinese) [张毅, 吴润衡, 梅凤翔 1999 上海力学 20 196]

    [10]

    Mei F X 1985 The Foundations of Mechanics of Nonholonomic System (Beijing: Beijing Institute of Technology Press) pp87-89 (in Chinese) [梅凤翔 1985 非完整系统力学基础 (北京: 北京工业学院出版社) 第87–89页]

    [11]

    Zhang J F 1990 Huanghuai. J. 6 13 (in Chinese) [张解放 1990 黄淮学刊 6 13]

    [12]

    Fu J L, Liu R W, Mei F X 1998 J. Beijing Inst. Tech. 7 215

    [13]

    Fu J L, Liu R W 2000 Acta Math. Sci. 20 63 (in Chinese) [傅景礼, 刘荣万 2000 数学 20 63]

    [14]

    Fu J L, Chen L Q 2004 The Progress of Research for Mathematics Mechanics Physics and High New Technology (Vol. 2004 (10)) (Chengdu: Southwest Jiaotong University Press) pp124-132 (in Chinese) [傅景礼, 陈立群 2004 数学·力学·物理学·高新技术研究进展 2004 (10) 卷 (成都:西南交通大学出版社) 第124–132页]

    [15]

    Xu X J, Mei F X 2005 Acta Phys. Sin. 54 5521 (in Chinese) [许学军, 梅凤翔 2005 54 5521]

    [16]

    Xue Y, Liu Y Z, Chen L Q 2006 Acta Phys. Sin. 55 3845 (in Chinese) [薛纭, 刘延柱, 陈立群 2006 55 3845]

    [17]

    Zhang Q, Liu Z B, Cai Y 2008 Chin. J. Aeronaut. 21 471 (in Chinese) [战强, 刘增波, 蔡尧 2008 中国航空学报 21 471]

    [18]

    Xie J F, Pang S, Zou J T, Li G F 2012 Acta Phys. Sin. 61 230201 (in Chinese) [谢加芳, 庞硕, 邹杰涛, 李国富 2012 61 230201]

    [19]

    Jarzebowska E M 2015 Selected Papers from CSNDD Agadir, Morocco, May 21-23, 2014 p167

    [20]

    Arnold V I (translated by Qi M Y) 2006 Mathematical Methods of Classical Mechanics (4th Ed.) (Beijing: Higher Education Press) pp59-69 (in Chinese) [阿诺尔德 著 (齐民友 译) 2006 经典力学的数学方法(第四版) (北京:高等教育出版社) 第59–69页]

    [21]

    Chern S S, Chen W H 2001 Lectures on Differential Geometry (2nd Ed.) (Beijing: Peking University Press) pp30-38 (in Chinese) [陈省身, 陈维桓 2001 微分几何讲义(第二版) (北京:北京大学出版社) 第30–38页]

    [22]

    Landau L D, Lifshitz E M (translated by Lu X, Ren L, Yuan B N) 2012 The Classical Theory of Fields (8th Ed.) (Beijing: Higher Education Press) p426 (in Chinese) [朗道, 栗弗席兹 (鲁欣, 任朗, 袁炳南 译) 2012 场论(第八版) (北京:高等教育出版社) 第426页]

  • [1] 彭傲平, 李志辉, 吴俊林, 蒋新宇. 含振动能激发Boltzmann模型方程气体动理论统一算法验证与分析.  , 2017, 66(20): 204703. doi: 10.7498/aps.66.204703
    [2] 赵国忠, 蔚喜军. 统一坐标系下二维气动方程组的Runge-Kutta间断Galerkin有限元方法.  , 2012, 61(11): 110208. doi: 10.7498/aps.61.110208
    [3] 苏进, 欧阳洁, 王晓东. 耦合不可压流场输运方程的格子Boltzmann方法研究.  , 2012, 61(10): 104702. doi: 10.7498/aps.61.104702
    [4] 解加芳, 庞硕, 邹杰涛, 李国富. 非完整系统Boltzmann-Hamel方程的Birkhoff化及其广义辛算法.  , 2012, 61(23): 230201. doi: 10.7498/aps.61.230201
    [5] 郑世旺, 乔永芬. 准坐标下广义非保守系统Lagrange方程的积分因子与守恒定理.  , 2006, 55(7): 3241-3245. doi: 10.7498/aps.55.3241
    [6] 许学军, 梅凤翔. 准坐标下一般完整系统的统一对称性.  , 2005, 54(12): 5521-5524. doi: 10.7498/aps.54.5521
    [7] 李海钧, 顾长志, 窦 艳, 李俊杰. 单根准直碳纳米纤维的场发射特性.  , 2004, 53(7): 2258-2262. doi: 10.7498/aps.53.2258
    [8] 乔永芬, 赵淑红, 李仁杰. 准坐标下完整力学系统的非Noether守恒量——Hojman定理的推广.  , 2004, 53(7): 2035-2039. doi: 10.7498/aps.53.2035
    [9] 董全林, 刘彬. 在伽利略坐标变换下的二端面弹性转轴相似动力学方程.  , 2002, 51(10): 2191-2196. doi: 10.7498/aps.51.2191
    [10] 李华兵, 黄乒花, 刘慕仁, 孔令江. 用格子Boltzmann方法模拟MKDV方程.  , 2001, 50(5): 837-840. doi: 10.7498/aps.50.837
    [11] 乔永芬, 赵淑红. 准坐标下广义力学系统的Lie对称定理及其逆定理.  , 2001, 50(1): 1-7. doi: 10.7498/aps.50.1
    [12] 李治宽. 自由电子激光的准Dirac方程.  , 1997, 46(7): 1349-1353. doi: 10.7498/aps.46.1349
    [13] 丁祥茂, 王延申, 侯伯宇. 活动标架系下以O(3)非线性σ模型Lax-pair矩阵的Poisson-Lie结构.  , 1994, 43(1): 1-6. doi: 10.7498/aps.43.1
    [14] 丁鄂江, 黄祖洽. Boltzmann方程的奇异扰动解法(Ⅰ)——正规解.  , 1985, 34(1): 65-76. doi: 10.7498/aps.34.65
    [15] 许殿彦. 用旋量零标架方法计算氢原子能级.  , 1984, 33(1): 126-131. doi: 10.7498/aps.33.126
    [16] 李先枢, 高燕球, 陈志恬, 冯镇业. 光学无源谐振腔的矩阵理论(柱坐标)(Ⅱ)——轴对称稳定光学无源谐振腔的计算.  , 1983, 32(8): 1002-1016. doi: 10.7498/aps.32.1002
    [17] 李先枢. 光学无源谐振腔的矩阵理论(柱坐标)(Ⅰ)——自洽场矩阵方程.  , 1983, 32(8): 990-1001. doi: 10.7498/aps.32.990
    [18] 李先枢. 平面屏系统中标量光波传播的矩阵理论(柱坐标).  , 1981, 30(10): 1325-1339. doi: 10.7498/aps.30.1325
    [19] 潘少华. 光学坐标变换系统的理论设计.  , 1981, 30(4): 514-519. doi: 10.7498/aps.30.514
    [20] 蒋声. 标架形式的简化旋量体系及其对杨振宁方程的应用.  , 1977, 26(3): 259-273. doi: 10.7498/aps.26.259
计量
  • 文章访问数:  6515
  • PDF下载量:  194
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-15
  • 修回日期:  2017-12-17
  • 刊出日期:  2019-03-20

/

返回文章
返回
Baidu
map