搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

窗口声阻抗对锆相变动力学的影响

种涛 王桂吉 谭福利 赵剑衡 唐志平

引用本文:
Citation:

窗口声阻抗对锆相变动力学的影响

种涛, 王桂吉, 谭福利, 赵剑衡, 唐志平

Phase transformation kinetics of zirconium under ramp wave loading with different windows

Chong Tao, Wang Gui-Ji, Tan Fu-Li, Zhao Jian-Heng, Tang Zhi-Ping
PDF
导出引用
  • 基于磁驱动加载装置CQ-4开展了锆的斜波压缩相变实验,研究了锆样品后表面窗口声阻抗对相变波形的影响.实验结果显示,锆后表面为较低声阻抗窗口(自由面和LiF窗口)时,相变起始对应的特征粒子速度约331.0 m/s,而高阻抗蓝宝石窗口时,特征粒子速度约301.9 m/s,特征速度对应的压力从约9.14 GPa下降到8.27 GPa.相变对应的速度特征拐点是与多种因素相关的实验信息,因此它对应的压力并不是材料属性参数相变压力.结合基于热力学Helmholtz自由能的多相状态方程和非平衡相变动力学方程开展了锆的相变动力学数值模拟研究,相变弛豫时间为30 ns,计算结果与三种情况的实验结果符合良好,可以较好地模拟斜波压缩下锆的弹塑性转变、相变等物理过程.在压力-比容和温度-压力热力学平面,相变前锆的准等熵线与冲击绝热线差异很小,相变后准等熵线都位于冲击绝热线下方,随着压力的增加准等熵线和冲击绝线偏差越来越大,温度-压力平面中在20 GPa时相差约100 K.相变开始后,由于相变引起比容的间断,导致锆的拉氏声速迅速下降约7%,相变完成后拉氏声速恢复到体波声速.
    The effect of window acoustic impedance on the wave profile of phase transition of zirconium under ramp wave compression is investigated in experiment and simulation. In the experiments, a ramp wave driven by magnetic pressure is applied to the zirconium samples backed windows with different acoustic impedances such as LiF, sapphire and free surface based on the compact pulsed power generator CQ-4. The experimental wave profiles measured by an advanced laser interference velocimeter show that the characteristic particle velocity of the onset phase transition from to is about 331.0 m/s in the conditions of LiF widow and free surface with low acoustic impedance, and it is approximately 301.9 m/s for the sapphire window with higher acoustic impedance. The corresponding onset pressure of phase transition varies from about 9.14 GPa to 8.27 GPa. The result shows that this onset pressure of phase transition, which is affected by diverse factors, is not the inherent value of phase transition belonging to the material properties. In order to describe these dynamic responses in experiment well, the numerical simulation of phase transition dynamics of zirconium is conducted in one-dimensional hydrodynamic code, in which included are the muti-phase equation of state based on Helmholtz free energy, the equation of non-equilibrium phase transition dynamics, and Steinberg constitutive relationship. The simulated results show that they can reflect the physical processes of elasto-plastic transition and - phase transition as well, which are excellently consistent with the experimental data. The relaxation times of - phase transition in three different acoustic impedance experiments are nearly the same (30 ns), and their finishing times of phase transition are all about 100 ns. The calculated quasi-isentrope of zirconium below 20 GPa in the pressure-volume and temperature-pressure thermodynamic planes shows that the isentrope and shock adiabat exhibit tiny difference before phase transition, and then separate gradually with the increase of pressure. The isentrope lies below the shock adiabat after the onset of phase transition. At about 20 GPa, the temperature of zirconium under ramp wave loading is bout 100 K lower than that under shock loading. Meanwhile, the abrupt change of volume at phase transition causes the Lagrange sound speed to reduce about 7% and then comes back to the bulk sound speed again after the phase transition has been finished.
      通信作者: 赵剑衡, jianh_zhao@caep.ac.cn
    • 基金项目: 国家自然科学基金委重大科研仪器设备研制专项(批准号:11327803)、四川省青年科技创新研究团队专项计划项目(批准号:2016TD0022)和科学挑战专题(批准号:JCKY2016212A501)资助的课题.
      Corresponding author: Zhao Jian-Heng, jianh_zhao@caep.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11327803), the project of Youth Innovation of Science and Technology of Sichuan Province, China (Grant No. 2016TD0022), and the National Challenging Plan, China (Grant No. JCKY2016212A501).
    [1]

    Xiao D W 2008 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese) [肖大武2008 博士学位论文(合肥: 中国科学技术大学)]

    [2]

    Bridgman P W 1952 Proceedings of the American Academy of Arts Sciences 81 165

    [3]

    Jamieson J C 1963 Science 140 72

    [4]

    Zilbershtein V A, Nosova G I, Estrin E I 1973 Phys. Met. Metallogr. 35 29

    [5]

    Xia H, Parthasarathy G, Luo H, Vohra Y K, Ruoff A L 1990 Phys. Rev. B 42 6736

    [6]

    Xia H, Duclos S J, Ruoff A L, Vohra Y K 1990 Phys. Rev. Lett. 64 204

    [7]

    Al'Tshuler L V, Bakanova A A, Dudoladov I P 1967 Zh. Eksp. Teor. Fiz. 53 1967

    [8]

    Al'Tshuler L V, Bakanova A A, Dudoladov I P, Dynin E A, Trunin R F, Chekin B S 1981 J. Appl. Mech. Tech. Ph. 22 145

    [9]

    McQueen R G, Marsh S P, Taylor J W, Fritz J N, Carter W J 1970 High Velocity Impact Phenomena (New York: Academic) pp293-417

    [10]

    Kutsar A R, Pavlovskii M N, Kamissarov V V 1982 Jetp. Lett. 39 1

    [11]

    Greeff C W 2005 Model. Simul. Mater. Sc. 13 1015

    [12]

    Cerreta E, Iii G T G, Hixson R S, Rigg P A, Brown D W 2005 Acta Mater. 53 1751

    [13]

    Gray G T, Bourne N K 2000 Shock Compression of Condensed Matter (Vol. 505) (American Institute of Physics) p509

    [14]

    Rigg P A, Greeff C W, Knudson M D, Iii G T G, Hixson R S 2009 J. Appl. Phys. 106 245

    [15]

    Li Y H 2006 M. S. Dissertation (Mianyang: China Academy of Engineering Physics) (in Chinese) [李英华 2006 硕士学位论文(绵阳: 中国工程物理研究院)]

    [16]

    Chong T, Wang G J, Tan F L, Luo B Q, Zhang X P, Wu G, Zhao J H 2014 Sci. Sin.: Phys. Mech. Astron. 44 1 (in Chinese) [种涛, 王桂吉, 谭福利, 罗斌强, 张旭平, 吴刚, 赵剑衡 2014 中国科学: 物理学 力学 天文学 44 1]

    [17]

    Wang G J, Luo B Q, Zhang X P, Zhao J H, Sun C W, Tan F L, Chong T, Mo J J, Wu G, Tao Y H 2013 Rev. Sci. Instrum. 84 015117

    [18]

    Hall C A, Asay J R, Knudson M D, Stygar W A, Hall C A, Asya J R, Knudson M D 2001 Rev. Sci. Instrum. 72 3587

    [19]

    Chong T 2012 M. S. Dissertation (Mianyang: China Academy of Engineering Physics) (in Chinese) [种涛 2012 硕士学位论文(绵阳: 中国工程物理研究院)]

    [20]

    Tang Z P 2008 Phase Transition under Shock Compression (Beijing: Science Press) p130 (in Chinese) [唐志平 2008 冲击相变 (北京: 科学出版社) 第130页]

    [21]

    Hayes D B 1975 J. Appl. Phys. 46 3438

    [22]

    Zuo Q H, Harstad E N, Addessio F L, Greeff C W 2006 Model. Simul. Mater. Sci. 14 1465

    [23]

    Steinberg D J, Cochran S G, Guinan M W 1980 J. Appl. Phys. 51 1498

  • [1]

    Xiao D W 2008 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese) [肖大武2008 博士学位论文(合肥: 中国科学技术大学)]

    [2]

    Bridgman P W 1952 Proceedings of the American Academy of Arts Sciences 81 165

    [3]

    Jamieson J C 1963 Science 140 72

    [4]

    Zilbershtein V A, Nosova G I, Estrin E I 1973 Phys. Met. Metallogr. 35 29

    [5]

    Xia H, Parthasarathy G, Luo H, Vohra Y K, Ruoff A L 1990 Phys. Rev. B 42 6736

    [6]

    Xia H, Duclos S J, Ruoff A L, Vohra Y K 1990 Phys. Rev. Lett. 64 204

    [7]

    Al'Tshuler L V, Bakanova A A, Dudoladov I P 1967 Zh. Eksp. Teor. Fiz. 53 1967

    [8]

    Al'Tshuler L V, Bakanova A A, Dudoladov I P, Dynin E A, Trunin R F, Chekin B S 1981 J. Appl. Mech. Tech. Ph. 22 145

    [9]

    McQueen R G, Marsh S P, Taylor J W, Fritz J N, Carter W J 1970 High Velocity Impact Phenomena (New York: Academic) pp293-417

    [10]

    Kutsar A R, Pavlovskii M N, Kamissarov V V 1982 Jetp. Lett. 39 1

    [11]

    Greeff C W 2005 Model. Simul. Mater. Sc. 13 1015

    [12]

    Cerreta E, Iii G T G, Hixson R S, Rigg P A, Brown D W 2005 Acta Mater. 53 1751

    [13]

    Gray G T, Bourne N K 2000 Shock Compression of Condensed Matter (Vol. 505) (American Institute of Physics) p509

    [14]

    Rigg P A, Greeff C W, Knudson M D, Iii G T G, Hixson R S 2009 J. Appl. Phys. 106 245

    [15]

    Li Y H 2006 M. S. Dissertation (Mianyang: China Academy of Engineering Physics) (in Chinese) [李英华 2006 硕士学位论文(绵阳: 中国工程物理研究院)]

    [16]

    Chong T, Wang G J, Tan F L, Luo B Q, Zhang X P, Wu G, Zhao J H 2014 Sci. Sin.: Phys. Mech. Astron. 44 1 (in Chinese) [种涛, 王桂吉, 谭福利, 罗斌强, 张旭平, 吴刚, 赵剑衡 2014 中国科学: 物理学 力学 天文学 44 1]

    [17]

    Wang G J, Luo B Q, Zhang X P, Zhao J H, Sun C W, Tan F L, Chong T, Mo J J, Wu G, Tao Y H 2013 Rev. Sci. Instrum. 84 015117

    [18]

    Hall C A, Asay J R, Knudson M D, Stygar W A, Hall C A, Asya J R, Knudson M D 2001 Rev. Sci. Instrum. 72 3587

    [19]

    Chong T 2012 M. S. Dissertation (Mianyang: China Academy of Engineering Physics) (in Chinese) [种涛 2012 硕士学位论文(绵阳: 中国工程物理研究院)]

    [20]

    Tang Z P 2008 Phase Transition under Shock Compression (Beijing: Science Press) p130 (in Chinese) [唐志平 2008 冲击相变 (北京: 科学出版社) 第130页]

    [21]

    Hayes D B 1975 J. Appl. Phys. 46 3438

    [22]

    Zuo Q H, Harstad E N, Addessio F L, Greeff C W 2006 Model. Simul. Mater. Sci. 14 1465

    [23]

    Steinberg D J, Cochran S G, Guinan M W 1980 J. Appl. Phys. 51 1498

  • [1] 李婷, 吴丰民, 张同涛, 王军军, 杨彬, 章东. 基于嵌入式粗糙颈亥姆霍兹共振器的低频宽带通风消声器.  , 2023, 72(22): 224301. doi: 10.7498/aps.72.20231047
    [2] 田春玲, 刘海燕, 王彪, 刘福生, 甘云丹. 稠密流体氮高温高压相变及物态方程.  , 2022, 71(15): 158701. doi: 10.7498/aps.71.20220124
    [3] 种涛, 莫建军, 郑贤旭, 傅华, 赵剑衡, 蔡进涛. 斜波压缩下RDX单晶的动力学特性.  , 2020, 69(17): 176101. doi: 10.7498/aps.69.20200318
    [4] 李俊, 吴强, 于继东, 谭叶, 姚松林, 薛桃, 金柯. 铁冲击相变的晶向效应.  , 2017, 66(14): 146201. doi: 10.7498/aps.66.146201
    [5] 蒋招绣, 王永刚, 聂恒昌, 刘雨生. 极化状态与方向对单轴压缩下Pb(Zr0.95Ti0.05)O3铁电陶瓷畴变与相变行为的影响.  , 2017, 66(2): 024601. doi: 10.7498/aps.66.024601
    [6] 桑永杰, 蓝宇, 丁玥文. Helmholtz水声换能器弹性壁液腔谐振频率研究.  , 2016, 65(2): 024301. doi: 10.7498/aps.65.024301
    [7] 蒋招绣, 辛铭之, 申海艇, 王永刚, 聂恒昌, 刘雨生. 多孔未极化Pb(Zr0.95Ti0.05)O3铁电陶瓷单轴压缩力学响应与相变.  , 2015, 64(13): 134601. doi: 10.7498/aps.64.134601
    [8] 王军国, 刘福生, 李永宏, 张明建, 张宁超, 薛学东. 在石英界面处液态水的冲击结构相变.  , 2012, 61(19): 196201. doi: 10.7498/aps.61.196201
    [9] 潘昊, 胡晓棉, 吴子辉, 戴诚达, 吴强. 铈低压冲击相变数值模拟研究.  , 2012, 61(20): 206401. doi: 10.7498/aps.61.206401
    [10] 刘丹阳, 王亚伟, 王仙, 何昆, 张兴娟, 杨春信. 氧相变换热器内压力波动的混沌特性分析.  , 2012, 61(15): 150506. doi: 10.7498/aps.61.150506
    [11] 李英华, 常敬臻, 李雪梅, 俞宇颖, 戴程达, 张林. 铋的固相及液相多相状态方程研究.  , 2012, 61(20): 206203. doi: 10.7498/aps.61.206203
    [12] 吕业刚, 梁晓琳, 龚跃球, 郑学军, 刘志壮. 外加电场对铁电薄膜相变的影响.  , 2010, 59(11): 8167-8171. doi: 10.7498/aps.59.8167
    [13] 季正华, 曾祥华, 岑洁萍, 谭明秋. ZnSe相变、电子结构的第一性原理计算.  , 2010, 59(2): 1219-1224. doi: 10.7498/aps.59.1219
    [14] 陈斌, 彭向和, 范镜泓, 孙士涛, 罗吉. 考虑相变的热弹塑性本构方程及其应用.  , 2009, 58(13): 29-S34. doi: 10.7498/aps.58.29
    [15] 邵建立, 秦承森, 王裴. 动态压缩下马氏体相变力学性质的微观研究.  , 2009, 58(3): 1936-1941. doi: 10.7498/aps.58.1936
    [16] 毛义军, 祁大同. 开口/封闭薄壳体声辐射和散射的统一边界积分方程解法.  , 2009, 58(10): 6764-6769. doi: 10.7498/aps.58.6764
    [17] 邵建立, 王 裴, 秦承森, 周洪强. 铁冲击相变的分子动力学研究.  , 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [18] 王 晖, 刘金芳, 何 燕, 陈 伟, 王 莺, L. Gerward, 蒋建中. 高压下纳米锗的状态方程与相变.  , 2007, 56(11): 6521-6525. doi: 10.7498/aps.56.6521
    [19] 崔新林, 祝文军, 邓小良, 李英骏, 贺红亮. 冲击波压缩下含纳米孔洞单晶铁的结构相变研究.  , 2006, 55(10): 5545-5550. doi: 10.7498/aps.55.5545
    [20] 刘 红, 王 慧. 双轴性向列相液晶的相变理论.  , 2005, 54(3): 1306-1312. doi: 10.7498/aps.54.1306
计量
  • 文章访问数:  6402
  • PDF下载量:  144
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-10
  • 修回日期:  2018-01-03
  • 刊出日期:  2018-04-05

/

返回文章
返回
Baidu
map