-
介绍了一种采用宽禁带半导体二氧化钛纳米管阵列薄膜材料制备伏特效应同位素电池的方法.通过对金属钛片的电化学阳极氧化制备了垂直定向、有序排列的二氧化钛纳米管阵列薄膜,研究了退火条件对二氧化钛纳米管阵列薄膜半导体光电性能的影响.通过与镍-63辐射源的集成封装,形成三明治结构镍-63/二氧化钛纳米管阵列薄膜/钛片的伏特同位素电池.实验结果表明,基于氩气氛围下450℃退火的黑色二氧化钛纳米管阵列薄膜具有高的氧空位缺陷浓度和宽的可见-紫外吸收光谱.在使用辐射总能量为10 mCi的镍-63辐射源时,同位素电池的开路电压为1.02 V,短路电流75.52 nA,最大有效转换效率为22.48%.
-
关键词:
- 二氧化钛纳米管阵列薄膜 /
- 电化学阳极氧化 /
- 同位素电池 /
- 伏特效应
This work is to develop a high-reliability long-life high-conversion-efficiency radio-isotope microbattery in order to meet power requirements of micro-electromechanical systems, micro-sensors, micro-actuators, wireless sensing net, and other electron devices working in harsh circumstances, such as polar, desert, subsea, outer surface, etc. Compared with traditional dry batteries, chemical batteries, fuel cells and solar cells, the radioactive isotope batteries have long service life, higher energy density, strong adaptability to environment, good work stability, no maintenance, and miniaturized size, etc. These advantages make the voltaic battery an attractive alternative. In this paper we present a voltaic battery with enhanced voltaic effect by using a wide-bandgap semiconductor TiO2 nanotube array thin film. An electrochemical anodic oxidation method is used to prepare the vertically oriented and highly ordered TiO2 nanotube array film on Ti plate. Electrolyte solution consists of ammonium fluoride, ethylene glycol, and deionized water. The structure (TiO2 nanotube array with diameter about 80-100 nm, wall thickness about 15-25 nm, and length 9 m) is characterized by field emission scanning electron microscope. The microstructure of the TiO2 nanotube array is characterized using X-ray diffraction. The effects of annealing condition on optical and electrical properties are studied. The electrical property is characterized by Keithley model 2450 source meter semiconductor characterization system in dark at room temperature. The voltaic batteries are assembled as a sandwiched structure (63Ni/TiO2 nanotube arrays film/Ti) using a radioisotope 63Ni plate and TiO2 nanotube array films. The experimental results show that the black TiO2 nanotube array film annealed at 450 ℃ in argon atmosphere could creates high visible-ultraviolet absorption due to a great many of oxygen vacancy defects generated in TiO2 nanotube array film. The oxygen vacancy signals are found by electron spin resonance. Compared with the planar structure, the nano-porous array structure has strong absorption to particles:most of the particles enter into the pores and are reflected or absorbed by the surface of the tube walls. With a 10 mCi 63Ni radiation source, the voltaic battery using black TiO2 nanotube array film can generate an open-circuited voltage of 1.02 V, a short-circuited current of 75.52 nA, and a maximum effective conversion efficiency of 22.48%.-
Keywords:
- TiO2 nanotube arrays thin films /
- electrochemical anodic oxidation /
- voltaic battery /
- voltaic effect
[1] Zhou Y, Zhang S X, Li G P 2017 Chin. Sci. Bull. 62 1831 (in Chinese) [周毅, 张世旭, 李公平 2017 科学通报 62 1831]
[2] Mark A P, Charles L W, Matthew L W, Eric D L, Robert J S, Denis A W 2014 Prog. Nucl. Energ. 75 117
[3] Gao H, Luo S Z, Zhang H M, Wang H Y 2012 Acta Phys. Sin. 61 176101 (in Chinese)[高晖, 罗顺忠, 张华明, 王和义 2012 61 176101]
[4] Rinehart G H 2001 Prog. Nucl. Energ. 39 305
[5] Bower K E, Barbanel Y A, Shreter Y G, Bohnert G W 2002 Polymer, Phosphors, and Voltaics for Radioisotope Microbatteries (Boca Raton Florida:CRC Press) p38
[6] Larry C O, Peter C, Bret J E 2012 Phys. Today 65 35
[7] Zhang H M, Hu R, Wang G Q, Gao H, Liu G P, Luo S Z 2013 At. Energ. Sci. Technol. 47 490 (in Chinese)[张华明, 胡睿, 王关全, 高晖, 刘国平, 罗顺忠 2013 原子能科学技术 47 490]
[8] Luo S Z, Wang G Q, Zhang H M 2011 J. Isot. 24 1 (in Chinese)[罗顺忠, 王关全, 张华明 2011 同位素 24 1]
[9] Clarkson J P, Sun W, Hirschman K D, Gadeken L L 2007 Phys. Status Solid A 204 1536
[10] Liu B J, Chen K P, Kherani N P, Zukotynski S 2009 Appl. Phys. Lett. 95 233112
[11] Sun W, Kherani N P, Hirschman K D, Gadeken L L, Fauchet P M 2005 Adv. Mater. 17 1230
[12] Olsen L C 1973 Energ. Convers. Manage. 13 117
[13] Eiting C, Krishnamoorthy V, Rodgers S, George T, Robertson J D, Brockman J 2006 Appl. Phys. Lett. 88 064101
[14] Cheng Z, Chen X, San H, Feng Z, Liu B 2012 J. Micromech. Microengineer. 22 074011
[15] Tang X, Liu Y, Ding D, Chen D 2012 Sci. China: Technol. Sci. 55 659
[16] Qiao D Y, Chen X J, Ren Y, Yuan W Z 2011 J. Microelectromech. Syst. 20 685
[17] Lee K, Mazare A, Schmuki P 2014 Chem. Rev. 114 9385
[18] Hu B, Lin J, Chen X F 2012 Semicond. Optoelectron. 33 648 (in Chinese) [胡奔, 林佳, 陈险峰 2012 半导体光电 33 648]
[19] Zhang L F, Ma J P, Zhang L, Zhang H X, Yan S J, Yao L N, Luo Z F 2015 J. Isotopes 28 25
[20] Bavykin D V, Walsh F C 2010 Mater. Today 13 66
[21] Diebold iebold U 2003 Surf. Sci. Rep. 48 53
[22] Lu P W 1996 Fundamentals of Inorganic Materials Science (1st Ed.) (Wuhan:Wuhan University of Technology Press) pp60-62 (in Chinese)[陆佩文 1996 无机材料科学基础 (第1版) (武汉:武汉工业大学出版社) 第6062页]
[23] Wang G, Wang H Y, Ling Y C, Tang Y C, Yang X Y Robert C F, Wang C C, Zhang J Z, Yat L 2011 Nano Lett. 11 3026
[24] Paramasivam I, Jha H, Liu N, Schmuki P 2012 Small 8 3073
[25] Beard M C 2011 J. Phys. Chem. Lett. 2 1282
[26] Smith Y R, Sarma B, Mohanty S K, Misra M 2012 ACS Appl. Mater. Interfaces 4 5883
-
[1] Zhou Y, Zhang S X, Li G P 2017 Chin. Sci. Bull. 62 1831 (in Chinese) [周毅, 张世旭, 李公平 2017 科学通报 62 1831]
[2] Mark A P, Charles L W, Matthew L W, Eric D L, Robert J S, Denis A W 2014 Prog. Nucl. Energ. 75 117
[3] Gao H, Luo S Z, Zhang H M, Wang H Y 2012 Acta Phys. Sin. 61 176101 (in Chinese)[高晖, 罗顺忠, 张华明, 王和义 2012 61 176101]
[4] Rinehart G H 2001 Prog. Nucl. Energ. 39 305
[5] Bower K E, Barbanel Y A, Shreter Y G, Bohnert G W 2002 Polymer, Phosphors, and Voltaics for Radioisotope Microbatteries (Boca Raton Florida:CRC Press) p38
[6] Larry C O, Peter C, Bret J E 2012 Phys. Today 65 35
[7] Zhang H M, Hu R, Wang G Q, Gao H, Liu G P, Luo S Z 2013 At. Energ. Sci. Technol. 47 490 (in Chinese)[张华明, 胡睿, 王关全, 高晖, 刘国平, 罗顺忠 2013 原子能科学技术 47 490]
[8] Luo S Z, Wang G Q, Zhang H M 2011 J. Isot. 24 1 (in Chinese)[罗顺忠, 王关全, 张华明 2011 同位素 24 1]
[9] Clarkson J P, Sun W, Hirschman K D, Gadeken L L 2007 Phys. Status Solid A 204 1536
[10] Liu B J, Chen K P, Kherani N P, Zukotynski S 2009 Appl. Phys. Lett. 95 233112
[11] Sun W, Kherani N P, Hirschman K D, Gadeken L L, Fauchet P M 2005 Adv. Mater. 17 1230
[12] Olsen L C 1973 Energ. Convers. Manage. 13 117
[13] Eiting C, Krishnamoorthy V, Rodgers S, George T, Robertson J D, Brockman J 2006 Appl. Phys. Lett. 88 064101
[14] Cheng Z, Chen X, San H, Feng Z, Liu B 2012 J. Micromech. Microengineer. 22 074011
[15] Tang X, Liu Y, Ding D, Chen D 2012 Sci. China: Technol. Sci. 55 659
[16] Qiao D Y, Chen X J, Ren Y, Yuan W Z 2011 J. Microelectromech. Syst. 20 685
[17] Lee K, Mazare A, Schmuki P 2014 Chem. Rev. 114 9385
[18] Hu B, Lin J, Chen X F 2012 Semicond. Optoelectron. 33 648 (in Chinese) [胡奔, 林佳, 陈险峰 2012 半导体光电 33 648]
[19] Zhang L F, Ma J P, Zhang L, Zhang H X, Yan S J, Yao L N, Luo Z F 2015 J. Isotopes 28 25
[20] Bavykin D V, Walsh F C 2010 Mater. Today 13 66
[21] Diebold iebold U 2003 Surf. Sci. Rep. 48 53
[22] Lu P W 1996 Fundamentals of Inorganic Materials Science (1st Ed.) (Wuhan:Wuhan University of Technology Press) pp60-62 (in Chinese)[陆佩文 1996 无机材料科学基础 (第1版) (武汉:武汉工业大学出版社) 第6062页]
[23] Wang G, Wang H Y, Ling Y C, Tang Y C, Yang X Y Robert C F, Wang C C, Zhang J Z, Yat L 2011 Nano Lett. 11 3026
[24] Paramasivam I, Jha H, Liu N, Schmuki P 2012 Small 8 3073
[25] Beard M C 2011 J. Phys. Chem. Lett. 2 1282
[26] Smith Y R, Sarma B, Mohanty S K, Misra M 2012 ACS Appl. Mater. Interfaces 4 5883
计量
- 文章访问数: 6485
- PDF下载量: 207
- 被引次数: 0