-
The quasi parallel light interference is one kind of basic ways to use the energy of interference light to interact with matter. Because the phase of each parallel light beam needs to meet the coherent condition, it is required that the phase of each light beam be controlled timely. There are some kinds of phase control methods, such as the heterodyne phase-locking method, the stochastic parallel gradient descent algorithm, the self-referred and self-synchronous phase-locking method the multi-dithering phase-locking method, etc. Among them, the multi-dithering method needs not the referenc light, it is to load multi-frequency sinusoid signals to the phase modulator, and realize the recognition of phase difference and the output of feedback voltage by multiplying circuit and integrating circuit. In view of the shortcomings of the existing methods, a scheme of filter-type multi-dithering phase control for quasi parallel light interference is proposed, in which the phase differences are identified and corrected by the modulation signals and filtering signals of different frequencies. Theoretical analysis of coherent light intensity for the scheme is made. The principle of filter-type multi-dithering phase control method is put forward, and the numerical analysis and simulation experiment for filter-type multi-dithering phase control method are carried out. In the simulation experiment, the fiber interference light path is used to simulate the light intensity of quasi parallel light interference at one point in space, and the change of photoelectric signal indicates the change of interference light intensity. The phase control feedback loop is composed of photoelectric signal amplifying circuit, bandpass filtering circuit, amplitude measuring circuit, direct current amplifying circuit and adder circuit. The results have shown that the phase difference among light beams can be recognized by the method, and the direct current voltage signal that is proportional to the phase difference of signal can be fed to control the phase modulator. The phase difference can be corrected. The control bandwidth is 2.5 kHz, and the output voltage range of phase control is 0.034.45 V. Compared with the classical multi-dithering method, the method of filter-type multi-dithering phase control has some advantages. Each multiplying circuit in the classical method needs a very small amplitude reference signal, which causes the reference signal to have a very small range of values, and the relationship between integral time and modulation period needs considering. The integral time is usually ten times longer than the modulation period, which causes the control bandwidth of the system to decrease. However, the feedback loop of the filter-type multi-dithering phase control method does not require any reference signal, so each signal does not affect each other, and the increase in the number of beams does not have a significant influence on the control bandwidth either. Therefore the filter-type multi-dithering phase control method is a useful phase-control method.
-
Keywords:
- quasi parallel light interference /
- filter /
- multi-dithering /
- phase control
[1] Liu Z J, Hou J, Xu X J, Feng Y, Zhou P, Ma Y X, Wang X L, Lei B, Cao J Q 2009 Chin. J. Lasers 36 2773(in Chinese) [刘泽金, 侯静, 许晓军, 冯莹, 周朴, 马阎星, 王小林, 雷兵, 曹涧秋 2009 中国激光 36 2773]
[2] Wang X L, Zhou P, Xu X J, Liu Z J, Chen Z L, Ma Y X, Ma H T, Li X, Zhao Y J 2009 Laser Optoelectronics Progress 05 13(in Chinese) [王小林, 周朴, 许晓军, 刘泽金, 陈子伦, 马阎星, 马浩统, 李霄, 赵伊君 2009 激光与光电子学进展 05 13]
[3] Goodno G D, Komine H, McNaught S J, Weiss S B, Remond S, Long W 2006 Opt. Lett. 31 1247
[4] Fan T Y 2005 IEEE J. Sel. Top. Quantum. Electron. 11 567
[5] Underwood K J, Jones A M, Gopinath 2015 Appl. Opt. 54 5624
[6] Uberna R, Bratcher A, Tiemann B 2010 Appl. Opt. 47 6762
[7] Wang D T, Zhou W J, Wen W F, Peng Q X, Li Z R, Hu W H, Li Z J 2013 High Power Laser Part. Beams 25 1125(in Chinese) [王德田, 周维军, 温伟峰, 彭其先, 李泽仁, 胡文华, 李忠建 2013 强激光与粒子束 25 1125]
[8] Xiao R, Hou J, Jiang Z F 2006 Acta Phys. Sin. 55 184(in Chinese) [肖瑞, 侯静, 姜宗福 2006 55 184]
[9] Zhou P, Ma Y X, Wang X L, Ma H T, Xu X J, Liu Z J 2009 Chin. J. Lasers 36 2972(in Chinese) [周朴, 马阎星, 王小林, 马浩统, 许晓军, 刘泽金 2009 中国激光 36 2972]
[10] Huang Z M, Tang X, Liu C L, Li J F, Zhang D Y, Wang X J, Han M 2015 Chin. J. Lasers 42 41(in Chinese) [黄智蒙, 唐选, 刘仓理, 李剑锋, 张大勇, 王小军, 韩梅 2015 中国激光 42 41]
[11] Zheng Y, Shen F 2010 Chin. J. Lasers 37 631(in Chinese) [郑轶, 沈锋 2010 中国激光 37 631]
[12] Mourou G, Brocklesby B, Tajima T, Limpert J 2013 Nature Photon. 07 258
[13] Shay T M, Benham V, Baker J T 2006 Opt. Express 25 12022
[14] Shay T M, Benham V, Baker J T 2007 IEEE J. Sel. Top. Quantum. Electron. 13 480
[15] Vorontsov M A, Weyrauch T, Beresnev L A, Liu L 2009 IEEE. J. Sel. Top. Quantum. Electron. 15 269
[16] Ma Y X, Wang X L, Zhou P, Ma H T, Zhao H C, Xu X J, Si L, Liu Z J, Zhao Y J 2010 High Power Laser Part. Beams 22 2803(in Chinese) [马阎星, 王小林, 周朴, 马浩统, 赵海川, 许晓军, 司磊, 刘泽金, 赵伊君 2010 强激光与粒子束 22 2803]
[17] Ma Y X, Si L, Dong X L, Zhou P, Xu X J 2012 Chin. J. Lasers 39 0031(in Chinese) [马阎星, 司磊, 董小林, 周朴, 许晓军 2012 中国激光 39 0031]
[18] Shay T M, Benham V 2004 Proc. SPIE 5550 313
[19] Ma Y X 2012 Ph. D. Dissertation (Changsha: National University of Defence Technology) (in Chinese) [马阎星 2012 博士学位论文 (长沙: 国防科技大学)]
[20] Lin L, Loizos D N, Vorontsov M A, Cauwenberghs G 2007 SPIE 6708
[21] Jolivet V, Bourdon P, Bennal B, Lombard L, Goular D 2009 IEEE. J. Sel. Top. Quantum. Electron. 15 257
[22] Liang K M 2006 Methods of Mathematical Physics (Beijing: Higher Education Press) p247 (in Chinese) [梁昆淼 2006 数学物理方法(北京: 高等教育出版社) 第247页]
[23] Wen W F, Wang D T, Zhou W J, Peng Q X 2014 J. Detect. Control 36 11(in Chinese) [温伟峰, 王德田, 周维军, 彭其先 2014 探测与控制学报 36 11]
-
[1] Liu Z J, Hou J, Xu X J, Feng Y, Zhou P, Ma Y X, Wang X L, Lei B, Cao J Q 2009 Chin. J. Lasers 36 2773(in Chinese) [刘泽金, 侯静, 许晓军, 冯莹, 周朴, 马阎星, 王小林, 雷兵, 曹涧秋 2009 中国激光 36 2773]
[2] Wang X L, Zhou P, Xu X J, Liu Z J, Chen Z L, Ma Y X, Ma H T, Li X, Zhao Y J 2009 Laser Optoelectronics Progress 05 13(in Chinese) [王小林, 周朴, 许晓军, 刘泽金, 陈子伦, 马阎星, 马浩统, 李霄, 赵伊君 2009 激光与光电子学进展 05 13]
[3] Goodno G D, Komine H, McNaught S J, Weiss S B, Remond S, Long W 2006 Opt. Lett. 31 1247
[4] Fan T Y 2005 IEEE J. Sel. Top. Quantum. Electron. 11 567
[5] Underwood K J, Jones A M, Gopinath 2015 Appl. Opt. 54 5624
[6] Uberna R, Bratcher A, Tiemann B 2010 Appl. Opt. 47 6762
[7] Wang D T, Zhou W J, Wen W F, Peng Q X, Li Z R, Hu W H, Li Z J 2013 High Power Laser Part. Beams 25 1125(in Chinese) [王德田, 周维军, 温伟峰, 彭其先, 李泽仁, 胡文华, 李忠建 2013 强激光与粒子束 25 1125]
[8] Xiao R, Hou J, Jiang Z F 2006 Acta Phys. Sin. 55 184(in Chinese) [肖瑞, 侯静, 姜宗福 2006 55 184]
[9] Zhou P, Ma Y X, Wang X L, Ma H T, Xu X J, Liu Z J 2009 Chin. J. Lasers 36 2972(in Chinese) [周朴, 马阎星, 王小林, 马浩统, 许晓军, 刘泽金 2009 中国激光 36 2972]
[10] Huang Z M, Tang X, Liu C L, Li J F, Zhang D Y, Wang X J, Han M 2015 Chin. J. Lasers 42 41(in Chinese) [黄智蒙, 唐选, 刘仓理, 李剑锋, 张大勇, 王小军, 韩梅 2015 中国激光 42 41]
[11] Zheng Y, Shen F 2010 Chin. J. Lasers 37 631(in Chinese) [郑轶, 沈锋 2010 中国激光 37 631]
[12] Mourou G, Brocklesby B, Tajima T, Limpert J 2013 Nature Photon. 07 258
[13] Shay T M, Benham V, Baker J T 2006 Opt. Express 25 12022
[14] Shay T M, Benham V, Baker J T 2007 IEEE J. Sel. Top. Quantum. Electron. 13 480
[15] Vorontsov M A, Weyrauch T, Beresnev L A, Liu L 2009 IEEE. J. Sel. Top. Quantum. Electron. 15 269
[16] Ma Y X, Wang X L, Zhou P, Ma H T, Zhao H C, Xu X J, Si L, Liu Z J, Zhao Y J 2010 High Power Laser Part. Beams 22 2803(in Chinese) [马阎星, 王小林, 周朴, 马浩统, 赵海川, 许晓军, 司磊, 刘泽金, 赵伊君 2010 强激光与粒子束 22 2803]
[17] Ma Y X, Si L, Dong X L, Zhou P, Xu X J 2012 Chin. J. Lasers 39 0031(in Chinese) [马阎星, 司磊, 董小林, 周朴, 许晓军 2012 中国激光 39 0031]
[18] Shay T M, Benham V 2004 Proc. SPIE 5550 313
[19] Ma Y X 2012 Ph. D. Dissertation (Changsha: National University of Defence Technology) (in Chinese) [马阎星 2012 博士学位论文 (长沙: 国防科技大学)]
[20] Lin L, Loizos D N, Vorontsov M A, Cauwenberghs G 2007 SPIE 6708
[21] Jolivet V, Bourdon P, Bennal B, Lombard L, Goular D 2009 IEEE. J. Sel. Top. Quantum. Electron. 15 257
[22] Liang K M 2006 Methods of Mathematical Physics (Beijing: Higher Education Press) p247 (in Chinese) [梁昆淼 2006 数学物理方法(北京: 高等教育出版社) 第247页]
[23] Wen W F, Wang D T, Zhou W J, Peng Q X 2014 J. Detect. Control 36 11(in Chinese) [温伟峰, 王德田, 周维军, 彭其先 2014 探测与控制学报 36 11]
计量
- 文章访问数: 5722
- PDF下载量: 146
- 被引次数: 0