搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

负带隙HgCdTe体材料的磁输运特性研究

沈丹萍 张晓东 孙艳 康亭亭 戴宁 褚君浩 俞国林

引用本文:
Citation:

负带隙HgCdTe体材料的磁输运特性研究

沈丹萍, 张晓东, 孙艳, 康亭亭, 戴宁, 褚君浩, 俞国林

Magnetotransport property of negative band gap HgCdTe bulk material

Shen Dan-Ping, Zhang Xiao-Dong, Sun Yan, Kang Ting-Ting, Dai Ning, Chu Jun-Hao, Yu Guo-Lin
PDF
导出引用
  • 通过单晶生长了Cd组分为0.1的p型HgCdTe体材料,并制备了具有倒置型能带序的HgCdTe场效应器件.通过磁输运测试,在负带隙HgCdTe体材料中观察到明显的量子霍尔平台效应和Shubnikov-de Haas(SdH)振荡效应,证明样品具有较好的质量.利用SdH振荡对1/B关系的快速傅里叶变换,得到了样品的零场自旋分裂能约为26.55 meV,证明样品中存在强自旋-轨道耦合作用.进一步分析SdH中的拍频节点估算了样品中的有效g因子约为-11.54.
    In recent years, spintronic devices have attracted more and more attention because of their good characteristics. The spin-orbit coupling of HgCdTe is one of the most important parts in the study of narrow gap semiconductors. The magneotransport properties of the Hg0.9Cd0.1Te bulk material with an inverted band structure have been hardly reported so far. The spin-orbit coupling strength of HgCdTe is closely related to the band gap. The strength of the spin-orbit coupling increases with the width of the band gap decreasing. Thus, Hg0.9Cd0.1Te should have strong spin-orbit coupling. Meanwhile it should be one of the most suitable materials to fabricate spintronic devices. The main propose of our experiments is to prove this inference. Inside the sample, Rashba spin-orbit interaction (SOI) strongly influences the spin-splitting due to the lack of structural inversion symmetry. In other words, Rashba SOI is the main part of the zero field spin splitting △0. The band structure of Hg1-xCdxTe can be precisely tuned by changing the composition of Cd which keeps an inverted band order when 0 x Γ8 band lying below the Γ6 band (or equivalently a positive band gap) when x0.165. In this paper, the p-type HgCdTe bulk material with Cd component of 0.1 is grown by single crystal. Anodic oxidation is used to induce an inversion layer on the HgCdTe bulk, and indium is used to facilitate Ohmic contacts. The magnetoresistance is measured in the van der Pauw configuration, and the magnetic field is applied perpendicularly to the film. All measurements are carried out in an Oxford Instruments He cryogenic system. At 1.5 K and zero gate voltage, the carrier density n is 1.3×1016 m-2. Clear Shubnikov-de Haas (SdH) oscillation in ρxx and quantum Hall plateaus of Rxy are observed in the Hg0.9Cd0.1Te bulk material with an inverted band structure is investigated in magnetotransport experiment. This indicates that our sample is a good transistor. Fast Fourier transformation is used to deduce the zero-field spin-splitting △0 which is about 26.55 meV. By studying the beating patterns in SdH oscillations we find that the effective g-factor is about-11.54. Both the large zero field spin splitting and the negative effective g-factor suggest that Hg0.9Cd0.1Te has really strong spin-orbit coupling. The investigation of SOI in Hg0.9Cd0.1Te can increase our knowledge of Hg-based narrow-gap semiconductors and benefit the field of spintronics.
      通信作者: 俞国林, yug@mail.sitp.ac.cn
    • 基金项目: 国家重点研发计划(批准号:2016YFA0202201)和国家自然科学基金(批准号:11774367)资助的课题.
      Corresponding author: Yu Guo-Lin, yug@mail.sitp.ac.cn
    • Funds: Project supported by the National Key R & D Program of China (Grant No. 2016YFA0202201) and the National Natural Science Foundation of China (Grant No. 11774367)
    [1]

    Hansen G L, Schmit J L, Casselman T N 1982 J. Appl. Phys. 53 7099

    [2]

    Chu J H 2005 Narrow-band Semiconductor Physics (Beijing: Science Press) p120 (in Chinese) [褚君浩 2005 窄禁带半导体物理学 (北京: 科学出版社) 第120页]

    [3]

    Hu W D, Liang J, Yue F Y, Chen X S, Lu W 2016 J. Infrared Millim. Wave 35 25 (in Chinese) [胡伟达, 梁健, 越方禹, 陈效双, 陆卫 2016 红外与毫米波学报 35 25]

    [4]

    Gawron W, Martyniuk P, Keblowski A, Kolwas K, Stepień D, Piotrowski J, Madejczyk P, Pedzińska M, Rogalski A 2016 Solid. State. Electron. 118 61

    [5]

    Kopytko M, Rogalski A 2016 Prog. Quant. Electron. 47 1

    [6]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757

    [7]

    Konig M, Wiedmann S, Brune C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766

    [8]

    Leubner P L, Lunczer L K, Brne C T, Buhmann H T, Molenkamp L R W 2016 Phys. Rev. Lett. 117 086403

    [9]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Molnar S V, Roukes M L, Chtchelkanova A Y, Treger D M 2000 Science 294 1488

    [10]

    Sarma S D 2001 Am. Sci. 89 516

    [11]

    Chen R Y, Chen Z G, Song X Y, Schneeloch J A, Gu G D, Wang F, Wang N L 2015 Phys. Rev. Lett. 115 176404

    [12]

    Kretinin A V, Shtrikman H, Goldhaber-Gordon D, Hanl M, Weichselbaum A, von Delft J, Costi T, Mahalu D 2011 Phys. Rev. B 84 245316

    [13]

    Wei L M, Liu X Z, Yu G L, Gao K H, Wang Q W, Lin T, Guo S L, Wei Y F, Yang J R, He L, Dai N, Chu J H 2013 J. Infrared Millim. Wave 32 141 (in Chinese) [魏来明, 刘新智, 俞国林, 高矿红, 王奇伟, 林铁, 郭少令, 魏彦锋, 杨建荣, 何力, 戴宁, 褚君浩 2013 红外与毫米波学报 32 141]

    [14]

    Gao K H, Wei L M, Yu G L, Yang R, Lin T, Wei Y F, Yang J R, Sun L, Dai N, Chu J H 2012 Acta Phys. Sin. 61 027301 (in Chinese) [高矿红, 魏来明, 俞国林, 杨睿, 林铁, 魏彦锋, 杨建荣, 孙雷, 戴宁, 褚君浩 2012 61 027301]

    [15]

    Qiu Z J, Gui Y S, Shu X Z, Dai N, Guo S L, Chu J H 2004 Acta Phys. Sin. 53 1186 (in Chinese) [仇志军, 桂永胜, 疏小舟, 戴宁, 郭少令, 褚君浩 2004 53 1186]

    [16]

    Ahearn J S, Davis G D, Byer N E 1982 J. Vac. Sci. Technol. 20 756

    [17]

    van der Pauw L J 1958 Philips. Tech. Rev. 20 220

    [18]

    Buget M, Karavolas V C, Pceters F M, Singleton J, Nicholas R J, Herlach F, Harris J J, van Hove M, Borghs G 1995 Phys. Rev. B 52 12218

    [19]

    Rowe A C H, Nehls J, Stradling R A 2001 Phys. Rev. B 63 201307

    [20]

    Yang W, Chang K 2006 Phys. Rev. B 73 045303

    [21]

    Das B, Datta S, Reifenberger R 1990 Phys. Rev. B 41 8278

    [22]

    Das B, Miller D C, Datta S, Reifenberger R, Hong W P, Bhattacharya P K, Singh J, Jaffe M 1989 Phys. Rev. B 39 1411

    [23]

    Wei L M 2012 Ph. D. Dissertation (Shanghai: Shanghai Institute of Technical Physics, CAS) (in Chinese) [魏来明 2012 博士学位论文 (上海: 中国科学院上海技术物理研究所)]

    [24]

    Coleridge P T, Stoner R, Fletcher R 1989 Phys. Rev. B 39 1120

    [25]

    Zhou Y M 2010 Ph. D. Dissertation (Shanghai: Shanghai Institute of Technical Physics, CAS) (in Chinese) [周远明 2010 博士学位论文 (上海: 中国科学院上海技术物理研究所)]

    [26]

    Yang R, Gao K H, Wei L M, Liu X Z, Hu G J, Yu G L, Lin T, Guo S L, Wei Y F, Yang J R, He L, Dai N, Chu J H, Austing D G 2011 Appl. Phys. Lett. 99 042103

    [27]

    Laurenti J P, Camassel J, Bouhemadou A, Toulouse B, Legros R, Lusson A 1990 J. Appl. Phys. 67 6454

    [28]

    Teran F J, Potemski M, Maude D K, Andrearczyk T, Jaroszynski J, Karczewski G 2002 Appl. Phys. Lett. 88 186803

    [29]

    Yakunin M V, Podgornykh S M, Mikhailov N N, Dvoretsky S A 2010 Physica E 42 948

    [30]

    Zhang X C, Ortner K, Pfeuffer-Jeschke A, Becker C R, Landwehr G 2004 Phys. Rev. B 69 115340

    [31]

    Winkler R 2003 Spin-Orbit Coupling Effects in Two-Dimenional Elec-tron and Hole Systems (Berlin: Springer-Verlag) p133

  • [1]

    Hansen G L, Schmit J L, Casselman T N 1982 J. Appl. Phys. 53 7099

    [2]

    Chu J H 2005 Narrow-band Semiconductor Physics (Beijing: Science Press) p120 (in Chinese) [褚君浩 2005 窄禁带半导体物理学 (北京: 科学出版社) 第120页]

    [3]

    Hu W D, Liang J, Yue F Y, Chen X S, Lu W 2016 J. Infrared Millim. Wave 35 25 (in Chinese) [胡伟达, 梁健, 越方禹, 陈效双, 陆卫 2016 红外与毫米波学报 35 25]

    [4]

    Gawron W, Martyniuk P, Keblowski A, Kolwas K, Stepień D, Piotrowski J, Madejczyk P, Pedzińska M, Rogalski A 2016 Solid. State. Electron. 118 61

    [5]

    Kopytko M, Rogalski A 2016 Prog. Quant. Electron. 47 1

    [6]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757

    [7]

    Konig M, Wiedmann S, Brune C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766

    [8]

    Leubner P L, Lunczer L K, Brne C T, Buhmann H T, Molenkamp L R W 2016 Phys. Rev. Lett. 117 086403

    [9]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Molnar S V, Roukes M L, Chtchelkanova A Y, Treger D M 2000 Science 294 1488

    [10]

    Sarma S D 2001 Am. Sci. 89 516

    [11]

    Chen R Y, Chen Z G, Song X Y, Schneeloch J A, Gu G D, Wang F, Wang N L 2015 Phys. Rev. Lett. 115 176404

    [12]

    Kretinin A V, Shtrikman H, Goldhaber-Gordon D, Hanl M, Weichselbaum A, von Delft J, Costi T, Mahalu D 2011 Phys. Rev. B 84 245316

    [13]

    Wei L M, Liu X Z, Yu G L, Gao K H, Wang Q W, Lin T, Guo S L, Wei Y F, Yang J R, He L, Dai N, Chu J H 2013 J. Infrared Millim. Wave 32 141 (in Chinese) [魏来明, 刘新智, 俞国林, 高矿红, 王奇伟, 林铁, 郭少令, 魏彦锋, 杨建荣, 何力, 戴宁, 褚君浩 2013 红外与毫米波学报 32 141]

    [14]

    Gao K H, Wei L M, Yu G L, Yang R, Lin T, Wei Y F, Yang J R, Sun L, Dai N, Chu J H 2012 Acta Phys. Sin. 61 027301 (in Chinese) [高矿红, 魏来明, 俞国林, 杨睿, 林铁, 魏彦锋, 杨建荣, 孙雷, 戴宁, 褚君浩 2012 61 027301]

    [15]

    Qiu Z J, Gui Y S, Shu X Z, Dai N, Guo S L, Chu J H 2004 Acta Phys. Sin. 53 1186 (in Chinese) [仇志军, 桂永胜, 疏小舟, 戴宁, 郭少令, 褚君浩 2004 53 1186]

    [16]

    Ahearn J S, Davis G D, Byer N E 1982 J. Vac. Sci. Technol. 20 756

    [17]

    van der Pauw L J 1958 Philips. Tech. Rev. 20 220

    [18]

    Buget M, Karavolas V C, Pceters F M, Singleton J, Nicholas R J, Herlach F, Harris J J, van Hove M, Borghs G 1995 Phys. Rev. B 52 12218

    [19]

    Rowe A C H, Nehls J, Stradling R A 2001 Phys. Rev. B 63 201307

    [20]

    Yang W, Chang K 2006 Phys. Rev. B 73 045303

    [21]

    Das B, Datta S, Reifenberger R 1990 Phys. Rev. B 41 8278

    [22]

    Das B, Miller D C, Datta S, Reifenberger R, Hong W P, Bhattacharya P K, Singh J, Jaffe M 1989 Phys. Rev. B 39 1411

    [23]

    Wei L M 2012 Ph. D. Dissertation (Shanghai: Shanghai Institute of Technical Physics, CAS) (in Chinese) [魏来明 2012 博士学位论文 (上海: 中国科学院上海技术物理研究所)]

    [24]

    Coleridge P T, Stoner R, Fletcher R 1989 Phys. Rev. B 39 1120

    [25]

    Zhou Y M 2010 Ph. D. Dissertation (Shanghai: Shanghai Institute of Technical Physics, CAS) (in Chinese) [周远明 2010 博士学位论文 (上海: 中国科学院上海技术物理研究所)]

    [26]

    Yang R, Gao K H, Wei L M, Liu X Z, Hu G J, Yu G L, Lin T, Guo S L, Wei Y F, Yang J R, He L, Dai N, Chu J H, Austing D G 2011 Appl. Phys. Lett. 99 042103

    [27]

    Laurenti J P, Camassel J, Bouhemadou A, Toulouse B, Legros R, Lusson A 1990 J. Appl. Phys. 67 6454

    [28]

    Teran F J, Potemski M, Maude D K, Andrearczyk T, Jaroszynski J, Karczewski G 2002 Appl. Phys. Lett. 88 186803

    [29]

    Yakunin M V, Podgornykh S M, Mikhailov N N, Dvoretsky S A 2010 Physica E 42 948

    [30]

    Zhang X C, Ortner K, Pfeuffer-Jeschke A, Becker C R, Landwehr G 2004 Phys. Rev. B 69 115340

    [31]

    Winkler R 2003 Spin-Orbit Coupling Effects in Two-Dimenional Elec-tron and Hole Systems (Berlin: Springer-Verlag) p133

  • [1] 郭晓庆, 王强, 薛海斌. 类场矩诱导的可调零场自旋转移力矩纳米振荡器.  , 2023, 72(16): 167501. doi: 10.7498/aps.72.20230628
    [2] 张松然, 何代华, 涂华垚, 孙艳, 康亭亭, 戴宁, 褚君浩, 俞国林. HgCdTe薄膜的输运特性及其应力调控.  , 2020, 69(5): 057301. doi: 10.7498/aps.69.20191330
    [3] 郭园园, 蒿建龙, 薛海斌, 刘喆颉. 面内形状各向异性能对自旋转矩振荡器零场振荡特性的影响.  , 2015, 64(19): 198502. doi: 10.7498/aps.64.198502
    [4] 高矿红, 魏来明, 俞国林, 杨睿, 林铁, 魏彦锋, 杨建荣, 孙雷, 戴宁, 褚君浩. HgCdTe反型层的磁输运性质.  , 2012, 61(2): 027301. doi: 10.7498/aps.61.027301
    [5] 卢成, 王丽, 卢志文, 宋海珍, 李根全. ZnS:Cr2+中局域晶格结构和自旋单态对零场分裂参量的贡献.  , 2011, 60(8): 087601. doi: 10.7498/aps.60.087601
    [6] 殷菲, 胡伟达, 全知觉, 张波, 胡晓宁, 李志锋, 陈效双, 陆卫. 激光束诱导电流法提取HgCdTe光伏探测器的电子扩散长度.  , 2009, 58(11): 7884-7890. doi: 10.7498/aps.58.7884
    [7] 崔昊杨, 李志锋, 李亚军, 刘昭麟, 陈效双, 陆 卫, 叶振华, 胡晓宁, 王 茺. 双光子吸收的Franz-Keldysh效应.  , 2008, 57(1): 238-242. doi: 10.7498/aps.57.238
    [8] 越方禹, 邵 军, 魏彦峰, 吕 翔, 黄 炜, 杨建荣, 褚君浩. 变温吸收谱研究液相外延碲镉汞浅能级.  , 2007, 56(5): 2878-2881. doi: 10.7498/aps.56.2878
    [9] 高宏玲, 李东临, 周文政, 商丽燕, 王宝强, 朱战平, 曾一平. 不同量子阱宽度的InP基In0.53GaAs/In0.52AlAs高电子迁移率晶体管材料二维电子气的性能研究.  , 2007, 56(8): 4955-4959. doi: 10.7498/aps.56.4955
    [10] 周忠堂, 郭丽伟, 邢志刚, 丁国建, 谭长林, 吕 力, 刘 建, 刘新宇, 贾海强, 陈 弘, 周均铭. AlGaN/AlN/GaN结构中二维电子气的输运特性.  , 2007, 56(10): 6013-6018. doi: 10.7498/aps.56.6013
    [11] 王庆学, 杨建荣, 魏彦锋. HgCdTe外延薄膜临界厚度的理论分析.  , 2005, 54(12): 5814-5819. doi: 10.7498/aps.54.5814
    [12] 孙立忠, 陈效双, 周孝好, 孙沿林, 全知觉, 陆 卫. 碲镉汞材料中Hg空位缺陷的第一性原理研究.  , 2005, 54(4): 1756-1761. doi: 10.7498/aps.54.1756
    [13] 黄杨程, 刘大福, 梁晋穗, 龚海梅. 短波碲镉汞光伏器件的低频噪声研究.  , 2005, 54(5): 2261-2266. doi: 10.7498/aps.54.2261
    [14] 孙 涛, 陈兴国, 胡晓宁, 李言谨. HgCdTe长波光伏探测器的表面漏电流及1/f噪声研究.  , 2005, 54(7): 3357-3362. doi: 10.7498/aps.54.3357
    [15] 仇志军, 桂永胜, 疏小舟, 戴宁, 郭少令, 君浩. HgTe/HgCdTe量子阱中巨大电子Rashba自旋分裂.  , 2004, 53(4): 1186-1190. doi: 10.7498/aps.53.1186
    [16] 陈建新, 李爱珍, 任尧成, K.Friedland. 赝配InGaAs/InAlAs调制掺杂异质结构的Shubnikov-de Haas振荡.  , 1998, 47(5): 796-801. doi: 10.7498/aps.47.796
    [17] 杜懋陆, 李兆民, 谌家军. d~3络合物零场分裂的双自旋-轨道耦合参数模型.  , 1995, 44(10): 1607-1614. doi: 10.7498/aps.44.1607
    [18] 任燕如. 用具有磁反馈的de Haas-van Alphen效应研究铅传导电子的轨道自旋劈裂因子.  , 1989, 38(10): 1559-1568. doi: 10.7498/aps.38.1559
    [19] 郑国珍, 郭少令, 汤定元. n-Hg1-xCdxTe的Shubnikov-de Haas振荡.  , 1987, 36(1): 114-119. doi: 10.7498/aps.36.114
    [20] 楼祺洪, 黄武汉. 自旋—自旋相互作用对红宝石基态零场分裂的贡献.  , 1965, 21(12): 1962-1967. doi: 10.7498/aps.21.1962
计量
  • 文章访问数:  5854
  • PDF下载量:  153
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-14
  • 修回日期:  2017-09-01
  • 刊出日期:  2017-12-05

/

返回文章
返回
Baidu
map