-
近年来硅基光子学已经慢慢走向成熟,它被认为是未来取代电子集成电路,实现下一代更高性能的光子集成电路的关键技术.这得益于硅基光子器件与现代的互补金属氧化物半导体工艺相兼容,能够实现廉价的大规模集成.然而,由于受硅材料本身的光电特性所限,在硅基平台上实现高性能的有源器件仍然存在着巨大挑战.石墨烯-硅基混合光子集成电路的发展为解决这一问题提供了可行的方案.这得益于石墨烯作为一种兼具高载流子迁移率、高电光系数和宽带吸收等优点的二维光电材料,能够方便地与现有硅基器件相集成,并充分发挥自身的光电性能优势.本文结合我们课题组在该领域研究的一些最新成果,介绍了国际上在石墨烯-硅基混合光子集成电路上的一些重要研究进展,涵盖了光源、光波导、光调制器和光探测器四个重要组成部分.Silicon photonics is considered as a promising technology to realize high-performance photonic integrated circuits, owing to its complementary metal oxide semiconductor-compatibility which is applicable for large-scale integration at low cost. However, due to the limitation of optoelectronic properties of silicon, the challenge to the realization of high-performance active device on the silicon integrated platform still exists. The recent development of graphene-silicon hybrid photonic integrated circuit provides a practical solution to this problem, because graphene, as a superior two-dimensional material, possesses many advantageous optoelectronic properties, such as high mobility, high electro-optical coefficient, and broadband absorption, which can be fully exploited to break through the material limitation of silicon. Moreover, compared with other active integrated materials such as germanium and compound semiconductors, graphene is cost-effective and can be conveniently integrated with silicon photonic device. Here, we review some important research progress of graphene-silicon hybrid photonic integrated circuits that include optical sources, optical waveguides, optical modulators, and photodetectors. The challenges and prospects of these devices are also analyzed, which are expected to be beneficial to the relevant research communities.
-
Keywords:
- silicon photonics /
- graphene photonics /
- integrated photonics
[1] Geim A K 2009 Science 324 1530
[2] Novoselov K S, Fal'ko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192
[3] Geim A K, Novoselov K S 2007 Nat. Mater. 6 183
[4] Bonaccorso F, Sun Z, Hasan T, Ferrari A C 2010 Nat. Photon. 4 611
[5] Bao Q L, Loh K P 2012 ACS Nano 6 3677
[6] Thomson D, Zilkie A, Bowers J E, Komljenovic T, Reed G T, Vivien L, Marris-Morini D, Cassan E, Virot L, Fdli J M, Hartmann J M, Schmid J H, Xu D X, Boeuf F, OBrien P, Mashanovich G Z, Nedeljkovic M 2016 J. Opt. 18 073003
[7] Li Z Y 2015 EPL 110 14001
[8] Wang C, Zhong X L, Li Z Y 2012 Sci. Rep. 2 674
[9] Jalali B, Fathpour S 2006 J. Lightwave Technol. 24 4600
[10] Fan L, Wang J, Varghese L T, Shen H, Niu B, Xuan Y, Weiner A M, Qi M H 2012 Science 335 447
[11] Roelkens G, Liu L, Liang D, Jones R, Fang A, Koch B, Bowers J 2010 Laser Photon. Rev. 4 751
[12] Liu M, Zhang X 2013 Nat. Photon. 7 851
[13] Freitag M, Chiu H Y, Steiner M, Perebeinos V, Avouris P 2010 Nat. Nanotechnol. 5 497
[14] Lawton L M, Mahlmeister N H, Luxmoore I J, Nash G R 2014 AIP Adv. 4 087139
[15] Lui C H, Mak K F, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 127404
[16] Kim Y D, Kim H, Cho Y, Ryoo J H, Park C H, Kim P, Kim Y S, Lee S, Li Y, Park S N, Yoo Y S, Yoon D, Dorgan V E, Pop E, Heinz T F, Hone J, Chun S H, Cheong H, Lee S W, Bae M H, Park Y D 2015 Nat. Nanotechnol. 10 676
[17] Shiue R J, Gao Y D, Peng C, Tan C, Efetov D K, Kim D, Home J, Englund D 2016 Conference on Laser and Electro-Optics San Jose, United States, June 5-10, 2016 paper STu4F.5
[18] Kaminer I, Katan Y T, Buljan H, Shen Y C, Ilic O, Lopez J J, Wong L J, Joannopoulos J D, Soljacic M 2016 Nat. Commun. 7 11880
[19] Cox J D, Marini A, de Abajo F J G 2017 Nat. Commun. 8 14380
[20] Yoshikawa N, Tamaya T, Tanaka K 2017 Science 356 736
[21] Pan D Y, Zhang J C, Li Z, Wu M H 2010 Adv. Mater. 22 734
[22] Liu M, Yin X B, Ulin-Avila E, Geng B S, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 474 64
[23] Li H, Anugrah Y, Koester S J, Li M 2012 Appl. Phys. Lett. 101 111110
[24] Cheng Z Z, Tsang H K, Wang X M, Xu K, Xu J B 2014 IEEE J. Sel. Top. Quant. 20 4400106
[25] Liu K, Zhang J F, Xu W, Zhu Z H, Guo C C, Li X J, Qin S Q 2015 Sci. Rep. 5 16734
[26] Zheng J, Yu L, He S, Dai D 2015 Sci. Rep. 5 7987
[27] Xiao T H, Cheng Z, Goda K 2017 Nanotechnology 28 245201
[28] Song S C, Chen Q, Jin L, Sun F H 2013 Nanoscale 5 9615
[29] Liu F L, Chong Y D, Adam S, Polini M 2014 2D Mater. 1 031001
[30] Kakenov N, Balci O, Takan T, Ozkan V A, Akan H, Kocabas C 2016 ACS Photon. 3 1531
[31] Hendry E, Hale P J, Moger J, Savchenko A K, Mikhailov S A 2010 Phys. Rev. Lett. 105 097401
[32] Wu R, Zhang Y L, Yan S C, Bian F, Wang W L, Bai X D, Lu X H, Zhao J M, Wang E G 2011 Nano Lett. 11 5159
[33] Avetissian H K, Mkrtchian G F 2016 Phys. Rev. B 94 045419
[34] Jablan M, Buljan H, Soljacic M 2009 Phys. Rev. B 80 245435
[35] Koppens F H L, Chang D E, de Abajo F J G 2011 Nano Lett. 11 3370
[36] Grigorenko A N, Polini M, Novoselov K S 2012 Nat. Photon. 6 749
[37] Yan S Q, Zhu X L, Frandsen L H, Xiao S S, Mortensen N A, Dong J J, Ding Y H 2017 Nat. Commun. 8 14411
[38] Xiao T H, Gan L, Li Z Y 2015 Photon. Res. 3 300
[39] Majumdar A, Kim J, Vuckovic J, Wang F 2013 Nano Lett. 13 515
[40] Qiu C, Gao W, Vajtai R, Ajayan P M, Kono J, Xu Q 2014 Nano Lett. 14 6811
[41] Ding Y, Zhu X, Xiao S, Hu H, Frandsen L H, Mortensen N A, Yvind K 2015 Nano Lett. 15 4393
[42] Shi Z, Gan L, Xiao T H, Guo H L, Li Z Y 2015 ACS Photon. 2 1513
[43] Bi W H, Wang Y Y, Fu G W, Wang X Y, Li C L 2016 Acta Phys. Sin. 65 047801 (in Chinese) [毕卫红, 王圆圆, 付广伟, 王晓愚, 李彩丽 2016 65 047801]
[44] Jin Q, Dong H M, Han K, Wang X F 2015 Acta Phys. Sin. 64 237801 (in Chinese) [金芹, 董海明, 韩奎, 王雪峰 2015 64 237801]
[45] Gan X T, Shiue R J, Gao Y D, Meric I, Heinz T F, Shepard K, Hone J, Assefa S, Englund D 2013 Nat. Photon. 7 883
[46] Pospischil A, Humer M, Furchi M M, Bachmann D, Guider R, Fromherz T, Mueller T 2013 Nat. Photon. 7 892
[47] Wang X M, Cheng Z Z, Xu K, Tsang H K, Xu J B 2013 Nat. Photon. 7 888
[48] Liu C H, Chang Y C, Norris T B, Zhong Z H 2014 Nat. Nanotechnol. 9 273
[49] Goykhman I, Sassi U, Desiatov B, Mazurski N, Milana S, de Fazio D, Eiden A, Khurgin J, Shappir J, Levy U, Ferrari A C 2016 Nano Lett. 16 3005
[50] Guo X, Wang W, Nan H, Yu Y, Jiang J, Zhao W, Li J, Zafar Z, Xiang N, Ni Z, Hu W, You Y, Ni Z 2016 Optica 3 1066
[51] Wang X M, Gan X T 2017 Chin. Phys. B 26 034203
-
[1] Geim A K 2009 Science 324 1530
[2] Novoselov K S, Fal'ko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192
[3] Geim A K, Novoselov K S 2007 Nat. Mater. 6 183
[4] Bonaccorso F, Sun Z, Hasan T, Ferrari A C 2010 Nat. Photon. 4 611
[5] Bao Q L, Loh K P 2012 ACS Nano 6 3677
[6] Thomson D, Zilkie A, Bowers J E, Komljenovic T, Reed G T, Vivien L, Marris-Morini D, Cassan E, Virot L, Fdli J M, Hartmann J M, Schmid J H, Xu D X, Boeuf F, OBrien P, Mashanovich G Z, Nedeljkovic M 2016 J. Opt. 18 073003
[7] Li Z Y 2015 EPL 110 14001
[8] Wang C, Zhong X L, Li Z Y 2012 Sci. Rep. 2 674
[9] Jalali B, Fathpour S 2006 J. Lightwave Technol. 24 4600
[10] Fan L, Wang J, Varghese L T, Shen H, Niu B, Xuan Y, Weiner A M, Qi M H 2012 Science 335 447
[11] Roelkens G, Liu L, Liang D, Jones R, Fang A, Koch B, Bowers J 2010 Laser Photon. Rev. 4 751
[12] Liu M, Zhang X 2013 Nat. Photon. 7 851
[13] Freitag M, Chiu H Y, Steiner M, Perebeinos V, Avouris P 2010 Nat. Nanotechnol. 5 497
[14] Lawton L M, Mahlmeister N H, Luxmoore I J, Nash G R 2014 AIP Adv. 4 087139
[15] Lui C H, Mak K F, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 127404
[16] Kim Y D, Kim H, Cho Y, Ryoo J H, Park C H, Kim P, Kim Y S, Lee S, Li Y, Park S N, Yoo Y S, Yoon D, Dorgan V E, Pop E, Heinz T F, Hone J, Chun S H, Cheong H, Lee S W, Bae M H, Park Y D 2015 Nat. Nanotechnol. 10 676
[17] Shiue R J, Gao Y D, Peng C, Tan C, Efetov D K, Kim D, Home J, Englund D 2016 Conference on Laser and Electro-Optics San Jose, United States, June 5-10, 2016 paper STu4F.5
[18] Kaminer I, Katan Y T, Buljan H, Shen Y C, Ilic O, Lopez J J, Wong L J, Joannopoulos J D, Soljacic M 2016 Nat. Commun. 7 11880
[19] Cox J D, Marini A, de Abajo F J G 2017 Nat. Commun. 8 14380
[20] Yoshikawa N, Tamaya T, Tanaka K 2017 Science 356 736
[21] Pan D Y, Zhang J C, Li Z, Wu M H 2010 Adv. Mater. 22 734
[22] Liu M, Yin X B, Ulin-Avila E, Geng B S, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 474 64
[23] Li H, Anugrah Y, Koester S J, Li M 2012 Appl. Phys. Lett. 101 111110
[24] Cheng Z Z, Tsang H K, Wang X M, Xu K, Xu J B 2014 IEEE J. Sel. Top. Quant. 20 4400106
[25] Liu K, Zhang J F, Xu W, Zhu Z H, Guo C C, Li X J, Qin S Q 2015 Sci. Rep. 5 16734
[26] Zheng J, Yu L, He S, Dai D 2015 Sci. Rep. 5 7987
[27] Xiao T H, Cheng Z, Goda K 2017 Nanotechnology 28 245201
[28] Song S C, Chen Q, Jin L, Sun F H 2013 Nanoscale 5 9615
[29] Liu F L, Chong Y D, Adam S, Polini M 2014 2D Mater. 1 031001
[30] Kakenov N, Balci O, Takan T, Ozkan V A, Akan H, Kocabas C 2016 ACS Photon. 3 1531
[31] Hendry E, Hale P J, Moger J, Savchenko A K, Mikhailov S A 2010 Phys. Rev. Lett. 105 097401
[32] Wu R, Zhang Y L, Yan S C, Bian F, Wang W L, Bai X D, Lu X H, Zhao J M, Wang E G 2011 Nano Lett. 11 5159
[33] Avetissian H K, Mkrtchian G F 2016 Phys. Rev. B 94 045419
[34] Jablan M, Buljan H, Soljacic M 2009 Phys. Rev. B 80 245435
[35] Koppens F H L, Chang D E, de Abajo F J G 2011 Nano Lett. 11 3370
[36] Grigorenko A N, Polini M, Novoselov K S 2012 Nat. Photon. 6 749
[37] Yan S Q, Zhu X L, Frandsen L H, Xiao S S, Mortensen N A, Dong J J, Ding Y H 2017 Nat. Commun. 8 14411
[38] Xiao T H, Gan L, Li Z Y 2015 Photon. Res. 3 300
[39] Majumdar A, Kim J, Vuckovic J, Wang F 2013 Nano Lett. 13 515
[40] Qiu C, Gao W, Vajtai R, Ajayan P M, Kono J, Xu Q 2014 Nano Lett. 14 6811
[41] Ding Y, Zhu X, Xiao S, Hu H, Frandsen L H, Mortensen N A, Yvind K 2015 Nano Lett. 15 4393
[42] Shi Z, Gan L, Xiao T H, Guo H L, Li Z Y 2015 ACS Photon. 2 1513
[43] Bi W H, Wang Y Y, Fu G W, Wang X Y, Li C L 2016 Acta Phys. Sin. 65 047801 (in Chinese) [毕卫红, 王圆圆, 付广伟, 王晓愚, 李彩丽 2016 65 047801]
[44] Jin Q, Dong H M, Han K, Wang X F 2015 Acta Phys. Sin. 64 237801 (in Chinese) [金芹, 董海明, 韩奎, 王雪峰 2015 64 237801]
[45] Gan X T, Shiue R J, Gao Y D, Meric I, Heinz T F, Shepard K, Hone J, Assefa S, Englund D 2013 Nat. Photon. 7 883
[46] Pospischil A, Humer M, Furchi M M, Bachmann D, Guider R, Fromherz T, Mueller T 2013 Nat. Photon. 7 892
[47] Wang X M, Cheng Z Z, Xu K, Tsang H K, Xu J B 2013 Nat. Photon. 7 888
[48] Liu C H, Chang Y C, Norris T B, Zhong Z H 2014 Nat. Nanotechnol. 9 273
[49] Goykhman I, Sassi U, Desiatov B, Mazurski N, Milana S, de Fazio D, Eiden A, Khurgin J, Shappir J, Levy U, Ferrari A C 2016 Nano Lett. 16 3005
[50] Guo X, Wang W, Nan H, Yu Y, Jiang J, Zhao W, Li J, Zafar Z, Xiang N, Ni Z, Hu W, You Y, Ni Z 2016 Optica 3 1066
[51] Wang X M, Gan X T 2017 Chin. Phys. B 26 034203
计量
- 文章访问数: 8945
- PDF下载量: 433
- 被引次数: 0