搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于聚多巴胺/氧化锌复合阴极缓冲层的倒置聚合物太阳能电池的研究

李琦 章勇

引用本文:
Citation:

基于聚多巴胺/氧化锌复合阴极缓冲层的倒置聚合物太阳能电池的研究

李琦, 章勇

Mechanism of inverted polymer solar cells based on poly(dopamine)/ZnO as composite cathode buffer layer

Li Qi, Zhang Yong
PDF
导出引用
  • 利用多巴胺氧化自聚合形成聚多巴胺(PDA)与ZnO结合形成PDA/ZnO复合阴极缓冲层,制备了以P3HT:PC61BM为活性层的倒置结构聚合物太阳能电池,通过改变PDA的自聚合时间来分析复合阴极缓冲层对器件性能的影响.实验发现,随着PDA的自聚合时间的增加,聚合物太阳能电池的光电转换效率先增大后减小,当自聚合时间为10 min时,相应器件光伏性能达到最优值,其开路电压Voc为0.66 V,短路电流密度Jsc为9.70 mA/cm2,填充因子FF为68.06%,光电转换效率PCE为4.35%.器件性能改善的原因是由于PDA/ZnO复合阴极缓冲层减小了ZnO与ITO之间的接触电阻,同时PDA中存在大量的氨基有利于倒置太阳能电池阴极对电子的收集.
    Inverted polymer solar cells with P3HT:PCBM as active layer are fabricated based on poly(dopamine)/ZnO (PDA/ZnO) as composite cathode buffer layer. Effects of PDA/ZnO composite cathode buffer layer with the different self-polymerization times on the device performance are investigated. According to the results, the short circuit current and photoelectric conversion efficiency of polymer solar cells first increase then decrease with the increase of the self-polymerization time of PDA. For 10-min PDA self-polymerization, the photovoltaic performance of the device achieves the optimal values:open circuit voltage 0.66 V, short circuit curent density 9.70 mA/cm2, fill factor 68.06%, and power conversion efficiency 4.35% under irratiation of light with a strength of 100 mW/cm2. We conclude that the improvement of device performance is due to the PDA/ZnO composite cathode buffer layer reduced the contact resistance between the ZnO and ITO, at the same time, the presence of a large number of nitrogen groups in PDA is advantageous for the electronic collection of the inverted polymer solar cells. Meanwhile, polymer solar cell with PDA/ZnO as composite cathode buffer layer also exhibits excelent stability. In addition, PDA has a strong adhesive force that makes the ZnO interface layer on its surface not easy to fall off. This provides a new way of fabricating the flexible polymer solar cell devices.
      通信作者: 章勇, zycq@scnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61377065,61574064)和广东省科技计划项目(批准号:2013CB040402009,2014B090915004,2015B010132009)资助的课题.
      Corresponding author: Zhang Yong, zycq@scnu.edu.cn
    • Funds: Project supported by the National Nature Science Foundation of China (Grant Nos. 61377065, 61574064) and the Science and Technology Planning Project of Guangdong Province, China (Grant Nos. 2013CB040402009, 2014B090915004, 2015B010132009).
    [1]

    Li Z, Wong H C, Huang Z, Zhong H, Tan C H, Tsoi W C, Kim J S, Durrant J R, Cabral J T 2013 Nat. Commun. 4 2227

    [2]

    He Z C, Xiao B, Liu F, Wu H B, Yang Y L, Xiao S, Wang C, Russell T P, Cao Y 2015 Nat. Photon. 9 174

    [3]

    Jiang X X, Xu H, Yang L G, Shi M M, Chen H Z 2009 Sol. Energy Mater. Sol. Cells 93 605

    [4]

    Lee K, Kim J Y, Park S H, Kim S H, Cho S, Heeger A J 2007 Adv. Mater. 19 2445

    [5]

    Park S, Tark S J, Lee J S, Lim H, Kim D 2009 Sol. Energy Mater. Sol. Cells 93 1020

    [6]

    Luo J, Wu H B, He C, He C, Li A Y, Yang W, Cao Y 2009 Appl. Phys. Lett. 95 043301

    [7]

    Huang F, Wu H B, Cao Y 2010 Chem. Soc. Rev. 39 2500

    [8]

    Yip H L, Hau S K, Baek N S, Ma H, Jen A K 2008 Adv. Mater. 20 2376

    [9]

    Yang T B, Wang M, Duan C H, Hu X W, Huang L, Peng J B, Huang F, Gong X 2012 Energy Environ. Sci. 5 8208

    [10]

    Kyaw A K K, Wang D H, Gupta V, Zhang J, Chand S, Bazan G C, Heeger A J 2013 Adv. Mater. 25 2397

    [11]

    Woo S, Kim W H, Kim H, Yi Y, Lyu H K, Kim Y 2014 Adv. Energy Mater. 130 1692

    [12]

    Lee H, Dellatore S M, Miller W M, Messersmith P B 2007 Science 318 426

    [13]

    Ye Q, Zhou F, Liu W 2011 Chem. Soci. Rev. 40 4244

    [14]

    Lee H, Scherer N F, Phillip B M 2006 PANS 103 12999

    [15]

    Jin Y X, Cheng Y R, Deng D Y, Jiang C J, Qi T K, Yang D L, Xiao F 2014 Appl. Mater. Interf. 6 1447

    [16]

    Lee H, Lee B P, Messersmith P B 2007 Nature 448 338

    [17]

    Jiang J H, Zhu L P, Zhu L J, Zhu B K, Xu Y Y 2011 Langmuir 27 14180

    [18]

    Lu L, Xu T, Chen W, Landry E S, Yu L 2014 Nat. Photon. 8 716

    [19]

    Cai P, Zhong S, Xu X F, Chen J W, Chen W, Huang F, Ma Y G, Cao Y 2014 Sol. Energy Mater. Sol. Cells 123 104

    [20]

    Kuwabara T, Kawahara Y, Yamaguchi T, Takahashi K 2009 ACS Appl. Mater. Inter. 10 2107

    [21]

    Wagner N, Schnurnberger W, Mller B, Lang M 1998 Electrochim. Acta 43 3785

    [22]

    Zhu G, Xu T, Lv T, Pan L K, Zhao Q F, Sun Z 2011 J. Electroanal. Chem. 650 248

  • [1]

    Li Z, Wong H C, Huang Z, Zhong H, Tan C H, Tsoi W C, Kim J S, Durrant J R, Cabral J T 2013 Nat. Commun. 4 2227

    [2]

    He Z C, Xiao B, Liu F, Wu H B, Yang Y L, Xiao S, Wang C, Russell T P, Cao Y 2015 Nat. Photon. 9 174

    [3]

    Jiang X X, Xu H, Yang L G, Shi M M, Chen H Z 2009 Sol. Energy Mater. Sol. Cells 93 605

    [4]

    Lee K, Kim J Y, Park S H, Kim S H, Cho S, Heeger A J 2007 Adv. Mater. 19 2445

    [5]

    Park S, Tark S J, Lee J S, Lim H, Kim D 2009 Sol. Energy Mater. Sol. Cells 93 1020

    [6]

    Luo J, Wu H B, He C, He C, Li A Y, Yang W, Cao Y 2009 Appl. Phys. Lett. 95 043301

    [7]

    Huang F, Wu H B, Cao Y 2010 Chem. Soc. Rev. 39 2500

    [8]

    Yip H L, Hau S K, Baek N S, Ma H, Jen A K 2008 Adv. Mater. 20 2376

    [9]

    Yang T B, Wang M, Duan C H, Hu X W, Huang L, Peng J B, Huang F, Gong X 2012 Energy Environ. Sci. 5 8208

    [10]

    Kyaw A K K, Wang D H, Gupta V, Zhang J, Chand S, Bazan G C, Heeger A J 2013 Adv. Mater. 25 2397

    [11]

    Woo S, Kim W H, Kim H, Yi Y, Lyu H K, Kim Y 2014 Adv. Energy Mater. 130 1692

    [12]

    Lee H, Dellatore S M, Miller W M, Messersmith P B 2007 Science 318 426

    [13]

    Ye Q, Zhou F, Liu W 2011 Chem. Soci. Rev. 40 4244

    [14]

    Lee H, Scherer N F, Phillip B M 2006 PANS 103 12999

    [15]

    Jin Y X, Cheng Y R, Deng D Y, Jiang C J, Qi T K, Yang D L, Xiao F 2014 Appl. Mater. Interf. 6 1447

    [16]

    Lee H, Lee B P, Messersmith P B 2007 Nature 448 338

    [17]

    Jiang J H, Zhu L P, Zhu L J, Zhu B K, Xu Y Y 2011 Langmuir 27 14180

    [18]

    Lu L, Xu T, Chen W, Landry E S, Yu L 2014 Nat. Photon. 8 716

    [19]

    Cai P, Zhong S, Xu X F, Chen J W, Chen W, Huang F, Ma Y G, Cao Y 2014 Sol. Energy Mater. Sol. Cells 123 104

    [20]

    Kuwabara T, Kawahara Y, Yamaguchi T, Takahashi K 2009 ACS Appl. Mater. Inter. 10 2107

    [21]

    Wagner N, Schnurnberger W, Mller B, Lang M 1998 Electrochim. Acta 43 3785

    [22]

    Zhu G, Xu T, Lv T, Pan L K, Zhao Q F, Sun Z 2011 J. Electroanal. Chem. 650 248

  • [1] 周玚, 任信钢, 闫业强, 任昊, 杜红梅, 蔡雪原, 黄志祥. 基于双层电子传输层钙钛矿太阳能电池的物理机制.  , 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [2] 甘永进, 蒋曲博, 覃斌毅, 毕雪光, 李清流. 锡基钙钛矿太阳能电池载流子传输层的探讨.  , 2021, 70(3): 038801. doi: 10.7498/aps.70.20201219
    [3] 李晔, 王茜茜, 卫会云, 仇鹏, 何荧峰, 宋祎萌, 段彰, 申诚涛, 彭铭曾, 郑新和. 原子层沉积的超薄InN强化量子点太阳能电池的界面输运.  , 2021, 70(18): 187702. doi: 10.7498/aps.70.20210554
    [4] 李家森, 梁春军, 姬超, 宫宏康, 宋奇, 张慧敏, 刘宁. 在空穴传输层聚(3-己基噻吩)中添加1, 8-二碘辛烷改善碳基钙钛矿太阳能电池的性能.  , 2021, 70(19): 198403. doi: 10.7498/aps.70.20210586
    [5] 李琦, 章勇. 基于Al2O3/MoO3复合阳极缓冲层的倒置聚合物太阳能电池的研究.  , 2018, 67(6): 067201. doi: 10.7498/aps.67.20172311
    [6] 孙凯, 何志群, 梁春军. 多温度阶梯退火对有机聚合物太阳能电池器件性能的影响.  , 2014, 63(4): 048801. doi: 10.7498/aps.63.048801
    [7] 刘志方, 赵谡玲, 徐征, 杨倩倩, 赵玲, 刘志民, 陈海涛, 杨一帆, 高松, 徐叙瑢. 利用Ag2O/PEDOT:PSS复合缓冲层提高P3HT:PCBM聚合物太阳能电池器件性能的研究.  , 2014, 63(6): 068402. doi: 10.7498/aps.63.068402
    [8] 龚伟, 徐征, 赵谡玲, 刘晓东, 杨倩倩, 樊星. NPB阳极缓冲层对反型结构聚合物太阳能电池性能的影响.  , 2014, 63(7): 078801. doi: 10.7498/aps.63.078801
    [9] 李国龙, 何力军, 李进, 李学生, 梁森, 高忙忙, 袁海雯. 纳米银增强聚合物太阳能电池光吸收的研究.  , 2013, 62(19): 197202. doi: 10.7498/aps.62.197202
    [10] 李青, 李海强, 赵娟, 黄江, 于军胜. 阴极修饰层对 SubPc/C60 倒置型有机太阳能电池性能的影响.  , 2013, 62(12): 128803. doi: 10.7498/aps.62.128803
    [11] 李国龙, 李进, 甄红宇. TiO2光学间隔层增强聚合物太阳能电池光吸收的分析.  , 2012, 61(20): 207203. doi: 10.7498/aps.61.207203
    [12] 肖正国, 曾雪松, 郭浩民, 赵志飞, 史同飞, 王玉琦. NiO透明导电薄膜的制备及在聚合物太阳能电池中的应用.  , 2012, 61(2): 026802. doi: 10.7498/aps.61.026802
    [13] 李国龙, 李进. 微纳光栅结构增强聚合物太阳能电池光吸收的研究.  , 2012, 61(20): 207204. doi: 10.7498/aps.61.207204
    [14] 黄卓寅, 李国龙, 李衎, 甄红宇, 沈伟东, 刘向东, 刘旭. 基于透射率曲线确定聚合物太阳能电池功能层的光学常数和厚度.  , 2012, 61(4): 048801. doi: 10.7498/aps.61.048801
    [15] 郝志红, 胡子阳, 张建军, 郝秋艳, 赵颖. 掺杂PEDOT ∶PSS对聚合物太阳能电池性能影响的研究.  , 2011, 60(11): 117106. doi: 10.7498/aps.60.117106
    [16] 刘瑞, 徐征, 赵谡玲, 张福俊, 曹晓宁, 孔超, 曹文喆, 龚伟. 利用不同阴极缓冲层来改善Pentacene/C60太阳能电池的性能.  , 2011, 60(5): 058801. doi: 10.7498/aps.60.058801
    [17] 李艳武, 刘彭义, 侯林涛, 吴冰. Rubrene作电子传输层的异质结有机太阳能电池.  , 2010, 59(2): 1248-1251. doi: 10.7498/aps.59.1248
    [18] 黄文波, 曾文进, 王 藜, 彭俊彪. 聚合物发光二极管中的负电容效应.  , 2008, 57(9): 5983-5988. doi: 10.7498/aps.57.5983
    [19] 黄文波, 彭俊彪. 高分子发光二极管载流子注入过程研究.  , 2007, 56(5): 2974-2978. doi: 10.7498/aps.56.2974
    [20] 张秀龙, 杨盛谊, 娄志东, 侯延冰. 有机电致发光器件的动态电学特性.  , 2007, 56(3): 1632-1636. doi: 10.7498/aps.56.1632
计量
  • 文章访问数:  7528
  • PDF下载量:  177
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-28
  • 修回日期:  2017-06-20
  • 刊出日期:  2017-10-05

/

返回文章
返回
Baidu
map