-
研制具有极限力学性能的金属材料一直是材料研究人员的梦想.超高强块体非晶合金是一类具有极高断裂强度(≥ 4 GPa)、高热稳定性(玻璃化转变温度通常高于800 K)和高硬度(通常高于12 GPa)的新型先进金属材料,其代表合金材料Co-Ta-B的断裂强度可达6 GPa,为目前公开报道的块体金属材料的强度记录值.本文系统地综述了该类超高强度块体非晶合金的组分、热学性能、弹性模量及力学性能,阐述了该类材料的研发历程;以弹性模量为联系桥梁,阐明了该类超高强块体非晶合金材料各物理性能的关联性,并揭示了其高强度、高硬度的价键本质.相关内容对于材料工作者了解该类超高强度金属材料的性能和特点,并推进该类材料在航空航天先进制造、超持久部件、机械加工等领域的实际应用有着重要意义.It is always desirable to develop bulk metal materials with extremely mechanical properties. Ultrahigh strength bulk metallic glass (BMG) is a kind of advanced metallic material with extremely high strength (above 4 GPa), high thermal stability (the glass transition temperature: normally above 800 K), and high hardness (normally above 12 GPa). A typical system of the ultrahigh strength BMG is Co-Ta-B alloy with a fracture strength of above 6 GPa, which is the highest value in the fracture strengths for all kinds of bulk metallic materials (including crystalline and amorphous ones) that we have known so far. In this paper, the compositions, thermal properties, elastic constants, and mechanical properties for all of the reported ultrahigh strength BMGs are summarized. The research progress of these BMGs is also introduced. The correlations among the characteristic temperature, elastic constants, hardness and mechanical properties are built, and the natures of chemical bonding for the ultrahigh strength and high hardness of these BMGs are revealed. The results relating to the structure and physical properties of this kind of ultrahigh strength BMG are significant for potential applications in advanced manufacture, super-durable components and machining.
[1] Ashby M F 2005 Materials Selection in Mechanical Design (Third Edition) (Butterworth-Heinemann) pp1-9
[2] Lu K 2010 Science 328 319
[3] Morris Jr J W, Guo Z, Krenn C R, Kim Y H 2001 ISIJ International 41 599
[4] Li Y, Raabe D, Herbig M, Choi P P, Goto S, Kostka A, Yarita H 2014 Phys. Rev. Lett. 113 106104
[5] Li Y J, Choi P, Goto S Borchers C, Raabe D, Kirchheim R 2012 Acta Mater. 60 4005
[6] Ashby M F, Greer A L 2006 Scripta Mater. 54 321
[7] Wang W H 2005 J. Non-Cryst. Solids 351 1481
[8] Inoue A 2000 Acta Mater 48 279
[9] Wang W H 2012 Prog. Mater. Sci. 57 487
[10] Chen H S 1974 Acta Metall. 22 1505
[11] Drehman A J, Greer A L, Turnbull D 1982 Appl. Phys. Lett. 41 716
[12] Inoue A, Zhang T, Masumoto T 1989 Mater. Trans. JIM 30 965
[13] Inoue A, Zhang T, Masumoto T 1990 Mater. Trans. JIM 31 425
[14] Inoue A, Kato A, Zhang T 1991 Mater. Trans. JIM 32 609
[15] Zhang T, Inoue A, Masumoto T 1991 Mater. Trans. JIM 32 1005
[16] Inoue A, Zhang T 1996 Mater. Trans. JIM 37 185
[17] Peker A, Johnson W L 1993 Appl. Phys. Lett. 63 2342
[18] Inoue A Shinohara1 Y, Gook J S 1995 Mater. Trans. JIM 36 1427
[19] Inoue A, Shen B L, Koshiba H, Kato H, Yavari A R 2003 Nature Mater. 2 661
[20] Chang C T, Shen B L, Inoue A 2006 Appl. Phys. Lett. 88 011901
[21] Inoue A, Shen B L, Koshiba H, Kato H, Yavari A R 2004 Acta Mater. 52 1631
[22] Zhang T, Yang Q, Ji Y F, Li R, Pang S J, Wang J F, Xu T 2011 Chin. Sci. Bull. 56 3972
[23] Inoue A, Shen B L, Chang C T 2006 Intermetallics 14 936
[24] Wang J Li R, Hua N B, Zhang T 2011 J. Mater. Res. 26 2072
[25] Dun T T, Liu H S, Shen B L 2012 J. Non-Cryst. Solids 358 3060
[26] Wang J F, Wang L G, Guan S K, Zhu S J, Li R, Zhang T 2014 J. Alloys Compod. 617 7
[27] Wang J F, Li R, Xiao R J, Xu T, Li R, Liu Z Q, Huang L, Hua N B, Li G, Li Y C, Zhang T 2011 Appl. Phys. Lett. 99 151911
[28] Man Q K, Sun H J, Dong Y Q, Shen B L, Kimura H, Makino A, Inoue A 2010 Intermetallics 18 1876
[29] Dong Y Q, Wang A D, Man Q K, Shen B L 2012 Intermetallics 23 63
[30] Shen B L, Inoue A, Chang C T 2004 Appl. Phys. Lett. 85 4911
[31] Lin C Y, Li M C, Chin T S 2007 J. Phys. D: Appl. Phys. 40 310
[32] Yao J H, Wang J Q, Li Y 2008 Appl. Phys. Lett 92 251906
[33] Yao J H, Yang H, Zhang J, Wang J Q, Li Y 2008 J. Mater. Res. 23 392
[34] Chang Z Y, Huang X M, Chen L Y, Ge M Y, Jiang Q K, Nie X P, Jiang J Z 2009 Mater. Sci. Engineer. A 517 246
[35] Park J M, Wang G, Li R, Mattern N, Eckert J, Kim D H 2010 Appl. Phys. Lett. 96 031905
[36] Gu X J, Joseph P S, Shiflet G J 2007 J. Mater. Res. 22 344
[37] Wei X Q 2017 M. S. Dissertation (Beijing: Beihang University) (in Chinese) [魏新权 2017 硕士学位论文 (北京: 北京航空航天大学)]
[38] Schuh C A, Hufnagel T C, Ramamurty U 2007 Acta Mater. 55 4067
[39] Liu Z Q, Wang R F, Qu R T, Zhang Z F 2014 J. Appl. Phys. 115 203513
[40] Chen X Q, Niu H, Li D, Li Y 2011 Intermetallics 19 1275
[41] Liu Y H, Wang G, Wang R J, Zhao D Q, Pan M X, Wang W H 2007 Science 315 1385
[42] Lewandowski J J, Wang W H, Greer A L 2005 Phil. Mag. Lett. 85 77
[43] Egami T, Poon S J, Zhang Z, Keppens V 2007 Phys. Rev. B 76 024203
[44] Johnson W L, Samwer K 2005 Phys. Rev. Lett. 95 95501
-
[1] Ashby M F 2005 Materials Selection in Mechanical Design (Third Edition) (Butterworth-Heinemann) pp1-9
[2] Lu K 2010 Science 328 319
[3] Morris Jr J W, Guo Z, Krenn C R, Kim Y H 2001 ISIJ International 41 599
[4] Li Y, Raabe D, Herbig M, Choi P P, Goto S, Kostka A, Yarita H 2014 Phys. Rev. Lett. 113 106104
[5] Li Y J, Choi P, Goto S Borchers C, Raabe D, Kirchheim R 2012 Acta Mater. 60 4005
[6] Ashby M F, Greer A L 2006 Scripta Mater. 54 321
[7] Wang W H 2005 J. Non-Cryst. Solids 351 1481
[8] Inoue A 2000 Acta Mater 48 279
[9] Wang W H 2012 Prog. Mater. Sci. 57 487
[10] Chen H S 1974 Acta Metall. 22 1505
[11] Drehman A J, Greer A L, Turnbull D 1982 Appl. Phys. Lett. 41 716
[12] Inoue A, Zhang T, Masumoto T 1989 Mater. Trans. JIM 30 965
[13] Inoue A, Zhang T, Masumoto T 1990 Mater. Trans. JIM 31 425
[14] Inoue A, Kato A, Zhang T 1991 Mater. Trans. JIM 32 609
[15] Zhang T, Inoue A, Masumoto T 1991 Mater. Trans. JIM 32 1005
[16] Inoue A, Zhang T 1996 Mater. Trans. JIM 37 185
[17] Peker A, Johnson W L 1993 Appl. Phys. Lett. 63 2342
[18] Inoue A Shinohara1 Y, Gook J S 1995 Mater. Trans. JIM 36 1427
[19] Inoue A, Shen B L, Koshiba H, Kato H, Yavari A R 2003 Nature Mater. 2 661
[20] Chang C T, Shen B L, Inoue A 2006 Appl. Phys. Lett. 88 011901
[21] Inoue A, Shen B L, Koshiba H, Kato H, Yavari A R 2004 Acta Mater. 52 1631
[22] Zhang T, Yang Q, Ji Y F, Li R, Pang S J, Wang J F, Xu T 2011 Chin. Sci. Bull. 56 3972
[23] Inoue A, Shen B L, Chang C T 2006 Intermetallics 14 936
[24] Wang J Li R, Hua N B, Zhang T 2011 J. Mater. Res. 26 2072
[25] Dun T T, Liu H S, Shen B L 2012 J. Non-Cryst. Solids 358 3060
[26] Wang J F, Wang L G, Guan S K, Zhu S J, Li R, Zhang T 2014 J. Alloys Compod. 617 7
[27] Wang J F, Li R, Xiao R J, Xu T, Li R, Liu Z Q, Huang L, Hua N B, Li G, Li Y C, Zhang T 2011 Appl. Phys. Lett. 99 151911
[28] Man Q K, Sun H J, Dong Y Q, Shen B L, Kimura H, Makino A, Inoue A 2010 Intermetallics 18 1876
[29] Dong Y Q, Wang A D, Man Q K, Shen B L 2012 Intermetallics 23 63
[30] Shen B L, Inoue A, Chang C T 2004 Appl. Phys. Lett. 85 4911
[31] Lin C Y, Li M C, Chin T S 2007 J. Phys. D: Appl. Phys. 40 310
[32] Yao J H, Wang J Q, Li Y 2008 Appl. Phys. Lett 92 251906
[33] Yao J H, Yang H, Zhang J, Wang J Q, Li Y 2008 J. Mater. Res. 23 392
[34] Chang Z Y, Huang X M, Chen L Y, Ge M Y, Jiang Q K, Nie X P, Jiang J Z 2009 Mater. Sci. Engineer. A 517 246
[35] Park J M, Wang G, Li R, Mattern N, Eckert J, Kim D H 2010 Appl. Phys. Lett. 96 031905
[36] Gu X J, Joseph P S, Shiflet G J 2007 J. Mater. Res. 22 344
[37] Wei X Q 2017 M. S. Dissertation (Beijing: Beihang University) (in Chinese) [魏新权 2017 硕士学位论文 (北京: 北京航空航天大学)]
[38] Schuh C A, Hufnagel T C, Ramamurty U 2007 Acta Mater. 55 4067
[39] Liu Z Q, Wang R F, Qu R T, Zhang Z F 2014 J. Appl. Phys. 115 203513
[40] Chen X Q, Niu H, Li D, Li Y 2011 Intermetallics 19 1275
[41] Liu Y H, Wang G, Wang R J, Zhao D Q, Pan M X, Wang W H 2007 Science 315 1385
[42] Lewandowski J J, Wang W H, Greer A L 2005 Phil. Mag. Lett. 85 77
[43] Egami T, Poon S J, Zhang Z, Keppens V 2007 Phys. Rev. B 76 024203
[44] Johnson W L, Samwer K 2005 Phys. Rev. Lett. 95 95501
计量
- 文章访问数: 7292
- PDF下载量: 549
- 被引次数: 0