-
非晶合金是一种不同于传统合金材料的新型合金,其突出的机械、物理、化学等性能在工程应用领域备受关注.作为一种具有无序原子结构的新型合金,非晶合金中蕴含的丰富的物理现象在基础研究领域也备受瞩目.非晶合金往往由多个组元构成,这给成分优化和性能调制带来了巨大的挑战.材料基因组方法是最近发展起来的新方法,通过高通量制备和结构表征以及性能筛选有望加快新型非晶合金材料的探索,在高通量表征中获得的大量实验数据可以帮助人们理解非晶合金中的科学问题.本文主要介绍高通量制备和表征在非晶合金中的应用,通过列举典型案例,展示通过高通量方法探索新型非晶合金材料的作用.Metallic glasses, which exhibit outstanding mechanical, physical, and chemical properties and rich phenomena, are important technologically and fundamentally. The progress in the field of metallic glasses has largely relied on the development of new glass forming alloys. However, due to the multi-component nature of metallic glass, discovery of new alloy is slow. The fabrication combined with high-throughput characterization under the umbrella of materials genome initiative has been demonstrated to be helpful for accelerating the material discovery. In addition, the big data generated during high-throughput characterization can conduce to understanding the science behind the behaviors of various materials. In the paper, we summarize the techniques that can be used for the combinatorial fabrication of metallic glasses, and relevant approaches to realize the high-throughput characterization.
-
Keywords:
- amorphous alloys /
- metallic glasses /
- materials genome /
- high throughput
[1] Schroers J, Hodges T M, Kumar G, Raman H, Barnes A J, Quoc P, Waniuk, T A 2011 Mater. Today 14 14
[2] Johnson W L 2002 JOM-J. Min. Met. Mat. Soc. 54 40
[3] Wang W H 2007 Prog. Mater. Sci. 52 540
[4] Ding S Y, Liu Y H, Li Y L, Liu Z, Sohn S, Walker F J, Schroers J 2014 Nat. Mater. 13 494
[5] Phillips C L, Littlewood P 2016 APL Mater. 4 053001
[6] Takeuchi I, Lauterbach J, Fasolka M J 2005 Mater. Today 8 18
[7] Hanak J J 1970 J. Mater. Sci. 5 964
[8] Yoo Y K, Xue Q Z, Chu Y S, Xu S F, Hangen U, Lee H C, Stein W, Xiang X D 2006 Intermetallics 14 241
[9] Wang H Z, Wang H, Ding H, Xiang X D, Xiang Y, Zhang X K 2015 Sci. Tech. Rev. 33 31 (in Chinese) [王海舟, 汪洪, 丁洪, 项晓东, 向勇, 张晓琨 2015 科技导报 33 31]
[10] Hata S, Sakurai J, Yamauchi R, Shimokohbe A 2007 Appl. Surf. Sci. 254 738
[11] Hata S, Yamauchi R, Sakurai J, Shimokohbe A 2006 Jpn. J. Appl. Phys. 45 2708
[12] Liu Y, Padmanabhan J, Cheung B, Liu J B, Chen Z, Scanley B E, Wesolowski D, Pressley M, Broadbridge C C, Altman S, Schwarz U D, Kyriakides T R, Schroers J 2016 Sci. Rep. 6 26950
[13] Li Y L, Jensen K E, Liu Y H, Liu J B, Gong P, Scanley B E, Broadbridge C C, Schroers J 2016 ACS Comb. Sci. 18 630
[14] Liu Y H, Fujita T, Aji D P B, Matsuura M, Chen M W 2014 Nat. Commun. 5 3238
[15] Deng Y P, Guan Y, Fowkes J D, Wen S Q, Liu F X, Phaff G M, Liaw P K, Liu C T, Rack P D 2007 Intermetallics 15 1208
[16] Tsai P, Flores K M 2015 Metall. Mater. Trans. A 46 3876
[17] Tsai P, Flores K M 2016 Acta Mater. 120 426
[18] Gregoire J M, McCluskey P J, Dale D, Ding S Y, Schroers J, Vlassak J J 2012 Scripta Mater. 66 178
[19] Lee D W, Zhao B G, Perim E, Zhang H T, Gong P, Gao Y L, Liu Y H, Toher C, Curtarolo S, Schroers J, Vlassak J J 2016 Acta Mater. 121 68
[20] Aono Y, Sakurai J, Ishida T, Shimokohbe A, Hata S 2010 Appl. Phys. Express 3 125601
[21] Aono Y, Sakurai J, Shimokohbe A, Hata S 2011 Jpn. J. Appl. Phys. 50 055601
[22] Guo Q, Noh J H, Liaw P K, Rack P D, Li Y, Thompson C V 2010 Acta Mater. 58 3633
-
[1] Schroers J, Hodges T M, Kumar G, Raman H, Barnes A J, Quoc P, Waniuk, T A 2011 Mater. Today 14 14
[2] Johnson W L 2002 JOM-J. Min. Met. Mat. Soc. 54 40
[3] Wang W H 2007 Prog. Mater. Sci. 52 540
[4] Ding S Y, Liu Y H, Li Y L, Liu Z, Sohn S, Walker F J, Schroers J 2014 Nat. Mater. 13 494
[5] Phillips C L, Littlewood P 2016 APL Mater. 4 053001
[6] Takeuchi I, Lauterbach J, Fasolka M J 2005 Mater. Today 8 18
[7] Hanak J J 1970 J. Mater. Sci. 5 964
[8] Yoo Y K, Xue Q Z, Chu Y S, Xu S F, Hangen U, Lee H C, Stein W, Xiang X D 2006 Intermetallics 14 241
[9] Wang H Z, Wang H, Ding H, Xiang X D, Xiang Y, Zhang X K 2015 Sci. Tech. Rev. 33 31 (in Chinese) [王海舟, 汪洪, 丁洪, 项晓东, 向勇, 张晓琨 2015 科技导报 33 31]
[10] Hata S, Sakurai J, Yamauchi R, Shimokohbe A 2007 Appl. Surf. Sci. 254 738
[11] Hata S, Yamauchi R, Sakurai J, Shimokohbe A 2006 Jpn. J. Appl. Phys. 45 2708
[12] Liu Y, Padmanabhan J, Cheung B, Liu J B, Chen Z, Scanley B E, Wesolowski D, Pressley M, Broadbridge C C, Altman S, Schwarz U D, Kyriakides T R, Schroers J 2016 Sci. Rep. 6 26950
[13] Li Y L, Jensen K E, Liu Y H, Liu J B, Gong P, Scanley B E, Broadbridge C C, Schroers J 2016 ACS Comb. Sci. 18 630
[14] Liu Y H, Fujita T, Aji D P B, Matsuura M, Chen M W 2014 Nat. Commun. 5 3238
[15] Deng Y P, Guan Y, Fowkes J D, Wen S Q, Liu F X, Phaff G M, Liaw P K, Liu C T, Rack P D 2007 Intermetallics 15 1208
[16] Tsai P, Flores K M 2015 Metall. Mater. Trans. A 46 3876
[17] Tsai P, Flores K M 2016 Acta Mater. 120 426
[18] Gregoire J M, McCluskey P J, Dale D, Ding S Y, Schroers J, Vlassak J J 2012 Scripta Mater. 66 178
[19] Lee D W, Zhao B G, Perim E, Zhang H T, Gong P, Gao Y L, Liu Y H, Toher C, Curtarolo S, Schroers J, Vlassak J J 2016 Acta Mater. 121 68
[20] Aono Y, Sakurai J, Ishida T, Shimokohbe A, Hata S 2010 Appl. Phys. Express 3 125601
[21] Aono Y, Sakurai J, Shimokohbe A, Hata S 2011 Jpn. J. Appl. Phys. 50 055601
[22] Guo Q, Noh J H, Liaw P K, Rack P D, Li Y, Thompson C V 2010 Acta Mater. 58 3633
计量
- 文章访问数: 10321
- PDF下载量: 912
- 被引次数: 0