搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

预退火时间对Fe80.8B10P8Cu1.2非晶合金微结构及磁性能的影响

曹成成 范珏雯 朱力 孟洋 王寅岗

引用本文:
Citation:

预退火时间对Fe80.8B10P8Cu1.2非晶合金微结构及磁性能的影响

曹成成, 范珏雯, 朱力, 孟洋, 王寅岗

Effects of relaxation time on local structural and magnetic properties of Fe80.8B10P8Cu1.2 amorphous alloy

Cao Cheng-Cheng, Fan Jue-Wen, Zhu Li, Meng Yang, Wang Yin-Gang
PDF
导出引用
  • 研究了预退火时间对Fe80.8B10P8Cu1.2非晶合金微结构及磁性能的影响.穆斯堡尔谱研究表明:在660 K的预退火温度下,随着预退火时间的增加,Fe原子不断富集,非晶基体中的类Fe3B化学短程有序结构向类FeB结构转变,并且非晶基体中Fe第一近邻壳层中Cu原子的逐渐脱离以及Fe-P配位键数量的明显减少可间接表征CuP团簇的形成过程.同时,本研究通过调节预退火时间来调控非晶基体中CuP团簇和Fe团簇的数量,促进后续退火晶化过程中α-Fe纳米晶相的析出,并细化纳米晶尺寸,从而获得综合磁性能更加优异的非晶/纳米晶软磁合金.
    Over past decades, Fe-based amorphous and nanocrystalline alloys have aroused a popular research interest because of their ability to achieve high saturation magnetic flux density and low coercivity, but the mechanisms for modifying annealing-induced magnetic properties on an atomic scale in amorphous matrix due to structural relaxation has not been enough understood. In this work, we study the effects of pre-annealing time on local structural and magnetic properties of Fe80.8B10P8Cu1.2 amorphous alloy to explore the mechanisms for structural relaxation, particularly the evolution of chemical short range order. The alloy ribbons, both melt spun and annealed, are characterized by differential scanning calorimetry, X-ray diffractometry, Mössbauer spectroscopy and magnetometry. The magnetic hyperfine field distribution of Mössbauer spectrum is decomposed into four components adopting Gaussian distributions which represent FeB-, Fe3P-, Fe3B- and α-Fe-like atomic arrangements, respectively. The fluctuation of magnetic hyperfine field distribution indicates that accompanied with the aggregation of Fe atoms, the amorphous structures in some atomic regions tend to transform from Fe3B- to FeB-like chemical short-range order with the pre-annealing time increasing, but the amorphous matrix begins to crystallize when the pre-annealing time reaches 25 min. Before crystallization, the spin-exchange interaction between magnetic atoms is strengthened due to the increase of the number of Fe clusters and the structure compaction. Thus, saturation magnetic flux density increases gradually, then shows a drastic rise when there appear α-Fe grains in the amorphous matrix. Coercivity first declines to a minimum after 5 min pre-annealing and then increases drastically. This is attributed to the fact that excess free volume and residual stresses in the melt spun sample are released out during previous pre-annealing, which can weaken magnetic anisotropy significantly, while the subsequent pre-annealing destroys the homogeneity of amorphous matrix, resulting in the increase of magnetic anisotropy. In addition, the separation of Cu atoms from the first near-neighbor shell of Fe atoms and the obvious decrease in the Fe-P coordination number suggest the formation of CuP clusters, which can provide heterogeneous nucleation sites for α-Fe and contribute to the grain refinement. Therefore, through controlling the pre-annealing time, we successfully tune the content values of CuP and Fe clusters in the amorphous matrix to promote the precipitation of α-Fe and refine grains during crystallization. For Fe80.8B10P8Cu1.2 nanocrystalline alloy, an enhancement of soft magnetic properties is achieved by a pre-annealing at 660 K for 5-10 min followed by a subsequent annealing at 750 K for 5 min.
      通信作者: 王寅岗, yingang.wang@nuaa.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51571115)、江苏省“六大人才高峰”项目(批准号:2015-XCL-007)和江苏高校优势学科建设工程资助的课题.
      Corresponding author: Wang Yin-Gang, yingang.wang@nuaa.edu.cn
    • Funds: Project supported by National Nature Science Foundation of China (Grant No. 51571115), the Six Talent Peaks Project of Jiangsu Province, China (Grant No. 2015-XCL-007) and the Priority Academic Program Development of Jiangsu Higher Education Institutions,China.
    [1]

    Zhang Y N, Wang Y J, Kong L T, Li J F 2012 Acta Phys. Sin. 61 157502 (in Chinese)[张雅楠, 王有骏, 孔令体, 李金富2012 61 157502]

    [2]

    Dai J, Wang Y G, Yang L, Xia G T, Zeng Q S, Lou H B 2017 Scripta Mater. 127 88

    [3]

    Miao X F, Wang Y G 2012 J. Mater. Sci. 47 1745

    [4]

    Jack R L, Dunleavy A J, Royall C 2014 Phys. Rev. Lett. 113 095703

    [5]

    Yang X H, Ma X H, Li Q, Guo S F 2013 J. Alloys Compd. 554 446

    [6]

    Xia G T, Wang Y G, Dai J, Dai Y D 2017 J. Alloys Compd. 690 281

    [7]

    Makino A, Men H, Kubota T, Yubuta K, Inoue A 2009 J. Appl. Phys. 105 07A308

    [8]

    Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379

    [9]

    Babilas R, Kadziolka-Gawel M 2015 Acta Phys. Pol. A 127 573

    [10]

    Gupta P, Gupta A, Shukla A, Ganguli T, Sinha A K, Principi G, Maddalena A 2011 J. Appl. Phys. 110 033537

    [11]

    Srinivas M, Majumdar B, Bysakh S, Raja M M, Akhtar D 2014 J. Alloys Compd. 583 427

    [12]

    Makino A, Men H, Kubota T, Yubuta K, Inoue A 2009 J. Appl. Phys. 105 07A308

    [13]

    Urata A, Matsumoto H, Yoshida S, Makino A 2011 J. Alloy. Compd. 509S S431

    [14]

    Chen F G, Wang Y G, Miao X F 2013 J. Alloys Compd. 549 26

    [15]

    Gonser U, Ghafari M, Wagner H G 1978 J. Magn. Magn. Mater. 8 175

    [16]

    Panissod P, Durand J, Budnick J I 1982 Nucl. Instrum. Methods 199 99

    [17]

    Vincze I, Boudreaux D S, Tegze M 1979 Phys. Rev. B 19 4896

    [18]

    Vincze I, Kemény T, Arajs S 1980 Phys. Rev. B 21 937

    [19]

    Torrens-Serra J, Bruna P, Roth S, Rodriguez-Viejo J, Clavaguera-Mora M T 2009 J. Phys. D:Appl. Phys. 42 095010

    [20]

    Cesnek M, Kubániová D, Kohout J, Křišt'an P,Štěpánková H, Závěta K, Lančok A,Štefánik M, Miglierini M 2016 Hyperfine Interact. 237 132

    [21]

    Gupta A, Kane S N, Bhagat N, Kulik T 2003 J. Magn. Magn. Mater. 254-255 492

    [22]

    Takeuchi A, Inoue A 2005 Mater. Trans. 46 2817

    [23]

    Makino A, Men H, Kubota T, Yubuta K, Inoue A 2009 Mater. Trans. A 50 204

    [24]

    Wang Y C, Takeuchi A, Makino A, Liang Y Y, Kawazoe Y 2014 J. Appl. Phys. 115 173910

    [25]

    Makino A 2012 IEEE Trans. Magn. 48 1331

    [26]

    Ohta M, Yoshizawa Y 2008 J. Appl. Phys. 103 07E722

    [27]

    Herzer G 1990 IEEE Trans. Magn. 26 1397

  • [1]

    Zhang Y N, Wang Y J, Kong L T, Li J F 2012 Acta Phys. Sin. 61 157502 (in Chinese)[张雅楠, 王有骏, 孔令体, 李金富2012 61 157502]

    [2]

    Dai J, Wang Y G, Yang L, Xia G T, Zeng Q S, Lou H B 2017 Scripta Mater. 127 88

    [3]

    Miao X F, Wang Y G 2012 J. Mater. Sci. 47 1745

    [4]

    Jack R L, Dunleavy A J, Royall C 2014 Phys. Rev. Lett. 113 095703

    [5]

    Yang X H, Ma X H, Li Q, Guo S F 2013 J. Alloys Compd. 554 446

    [6]

    Xia G T, Wang Y G, Dai J, Dai Y D 2017 J. Alloys Compd. 690 281

    [7]

    Makino A, Men H, Kubota T, Yubuta K, Inoue A 2009 J. Appl. Phys. 105 07A308

    [8]

    Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379

    [9]

    Babilas R, Kadziolka-Gawel M 2015 Acta Phys. Pol. A 127 573

    [10]

    Gupta P, Gupta A, Shukla A, Ganguli T, Sinha A K, Principi G, Maddalena A 2011 J. Appl. Phys. 110 033537

    [11]

    Srinivas M, Majumdar B, Bysakh S, Raja M M, Akhtar D 2014 J. Alloys Compd. 583 427

    [12]

    Makino A, Men H, Kubota T, Yubuta K, Inoue A 2009 J. Appl. Phys. 105 07A308

    [13]

    Urata A, Matsumoto H, Yoshida S, Makino A 2011 J. Alloy. Compd. 509S S431

    [14]

    Chen F G, Wang Y G, Miao X F 2013 J. Alloys Compd. 549 26

    [15]

    Gonser U, Ghafari M, Wagner H G 1978 J. Magn. Magn. Mater. 8 175

    [16]

    Panissod P, Durand J, Budnick J I 1982 Nucl. Instrum. Methods 199 99

    [17]

    Vincze I, Boudreaux D S, Tegze M 1979 Phys. Rev. B 19 4896

    [18]

    Vincze I, Kemény T, Arajs S 1980 Phys. Rev. B 21 937

    [19]

    Torrens-Serra J, Bruna P, Roth S, Rodriguez-Viejo J, Clavaguera-Mora M T 2009 J. Phys. D:Appl. Phys. 42 095010

    [20]

    Cesnek M, Kubániová D, Kohout J, Křišt'an P,Štěpánková H, Závěta K, Lančok A,Štefánik M, Miglierini M 2016 Hyperfine Interact. 237 132

    [21]

    Gupta A, Kane S N, Bhagat N, Kulik T 2003 J. Magn. Magn. Mater. 254-255 492

    [22]

    Takeuchi A, Inoue A 2005 Mater. Trans. 46 2817

    [23]

    Makino A, Men H, Kubota T, Yubuta K, Inoue A 2009 Mater. Trans. A 50 204

    [24]

    Wang Y C, Takeuchi A, Makino A, Liang Y Y, Kawazoe Y 2014 J. Appl. Phys. 115 173910

    [25]

    Makino A 2012 IEEE Trans. Magn. 48 1331

    [26]

    Ohta M, Yoshizawa Y 2008 J. Appl. Phys. 103 07E722

    [27]

    Herzer G 1990 IEEE Trans. Magn. 26 1397

  • [1] 陈波, 杨詹詹, 王玉楹, 王寅岗. 退火时间对Fe80Si9B10Cu1非晶合金纳米尺度结构不均匀性和磁性能的影响.  , 2022, 71(15): 156102. doi: 10.7498/aps.71.20220446
    [2] 韩泽宇, 宋乘吉, 周杰, 郑富. 衬底层对Fe65Co35合金薄膜结构与磁性的影响.  , 2022, 71(15): 157501. doi: 10.7498/aps.71.20220476
    [3] 姚可夫, 施凌翔, 陈双琴, 邵洋, 陈娜, 贾蓟丽. 铁基软磁非晶/纳米晶合金研究进展及应用前景.  , 2018, 67(1): 016101. doi: 10.7498/aps.67.20171473
    [4] 闻平. 玻璃形成体系中的β弛豫.  , 2017, 66(17): 176407. doi: 10.7498/aps.66.176407
    [5] 张雅楠, 王有骏, 孔令体, 李金富. Y对Fe-Si-B 合金非晶形成能力及软磁性能的影响.  , 2012, 61(15): 157502. doi: 10.7498/aps.61.157502
    [6] 郑小平, 张佩峰, 李发伸, 郝远. Tb0.3Dy0.6Pr0.1(Fe1-xAlx)1.95合金的磁性、磁致伸缩和穆斯堡尔谱研究.  , 2009, 58(8): 5768-5772. doi: 10.7498/aps.58.5768
    [7] 韩 薇, 常树全, 戴耀东, 陈 达, 黄彦君. 氰根桥联Ni(Ⅱ)-Fe(Ⅲ)类纳米分子磁体磁性及穆斯堡尔谱研究.  , 2008, 57(4): 2493-2499. doi: 10.7498/aps.57.2493
    [8] 郑小平, 张佩峰, 范多旺, 李发伸, 郝 远. Tb0.3Dy0.7-xPrx(Fe0.9Al0.1)1.95合金的磁致伸缩、自旋重取向和穆斯堡尔谱研究.  , 2007, 56(1): 535-540. doi: 10.7498/aps.56.535
    [9] 黄彦君, 厉淑贞, 韩志达, 吕丽娅, 夏元复. 金属间化合物PrMn6Sn6的结构、磁性与119Sn穆斯堡尔谱研究.  , 2007, 56(4): 2347-2352. doi: 10.7498/aps.56.2347
    [10] 陆曹卫, 卢志超, 孙 克, 李德仁, 周少雄. 水雾化制备Fe74Al4Sn2P10C2B4Si4非晶合金粉末及其磁粉芯性能研究.  , 2006, 55(5): 2553-2556. doi: 10.7498/aps.55.2553
    [11] 程伟东, 孙民华, 李佳云, 王爱屏, 孙永丽, 刘 芳, 刘雄军. Cu60Zr30Ti10非晶合金弛豫和晶化过程的小角X射线散射研究.  , 2006, 55(12): 6673-6676. doi: 10.7498/aps.55.6673
    [12] 王 丽, 王海波, 王 涛, 李发伸. CoFe2O4纳米颗粒的结构、磁性以及离子迁移.  , 2006, 55(12): 6515-6521. doi: 10.7498/aps.55.6515
    [13] 郑小平, 张佩峰, 范多旺, 李发伸, 郝 远. Tb0.3Dy0.7(Fe0.9T0.1)1.95合金的结构、自旋重取向和穆斯堡尔谱.  , 2006, 55(2): 879-883. doi: 10.7498/aps.55.879
    [14] 史慧刚, 付军丽, 薛德胜. 非晶Fe89.7P10.3合金纳米线阵列的磁性研究.  , 2005, 54(8): 3862-3866. doi: 10.7498/aps.54.3862
    [15] 杨全民, 王玲玲. 频率对纳米晶软磁合金磁性能影响的理论解释.  , 2005, 54(9): 4256-4262. doi: 10.7498/aps.54.4256
    [16] 李 腾, 李 卫, 李岫梅. 高矫顽力型FeCrCo合金相变化的穆斯堡尔谱研究.  , 2005, 54(9): 4384-4388. doi: 10.7498/aps.54.4384
    [17] 柳 义, 吴志方, 柳 林, 张 涛. 块体非晶合金Zr55Cu30Al10Ni5 结构弛豫的研究.  , 2005, 54(4): 1679-1682. doi: 10.7498/aps.54.1679
    [18] 陈岁元, 刘常升, 傅贵勤, 任晓彧, 才庆魁. 激光辐照非晶Fe73.5Cu1Nb3Si13.5B 9微量晶化的穆斯堡尔谱研究.  , 2003, 52(10): 2486-2491. doi: 10.7498/aps.52.2486
    [19] 柳 义, 柳 林, 王 俊, 赵 辉, 荣利霞, 董宝中. 用原位x射线小角散射研究块体非晶合金Zr55Cu30Al10 Ni5的结构弛豫.  , 2003, 52(9): 2219-2222. doi: 10.7498/aps.52.2219
    [20] 刘青芳, 王建波, 彭勇, 曹兴忠, 薛德胜. 铁镍合金纳米线阵列的制备与穆斯堡尔谱研究.  , 2001, 50(10): 2008-2011. doi: 10.7498/aps.50.2008
计量
  • 文章访问数:  5738
  • PDF下载量:  194
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-10
  • 修回日期:  2017-06-07
  • 刊出日期:  2017-08-05

/

返回文章
返回
Baidu
map