搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氖原子对2000 eV X射线激光透明的产生机制

冯雷 蒋刚

引用本文:
Citation:

氖原子对2000 eV X射线激光透明的产生机制

冯雷, 蒋刚

2000 eV X-ray laser transparent mechanism of neon atom

Feng Lei, Jiang Gang
PDF
导出引用
  • X射线自由电子激光与物质相互作用时出现了X射线透明现象,研究X射线透明现象的产生机制对理解X射线自由电子激光与物质相互作用过程具有重要参考价值.本文基于FAC(Flexible Atomic Code)程序计算的氖原子(离子)对2000 eV X射线的光电离截面和俄歇衰变速率,确定了不同通量密度下氖原子的主要电离方式;通过建立和解速率方程,得到了确定的电离方式中氖元素各电子组态数目比例随时间变化的公式,计算了氖原子在通量密度为2000和10000 -2fs-1、持续时间为20 fs、光子能量为2000 eV的X射线激光照射下,任意时刻各主要电子组态的原子数目比例和总的氖原子平均光电离截面.建立了价电子完整的空心原子的数目比例随通量密度和曝光时间变化的公式.发现裸核和空心原子都会导致X射线透明,且选择恰当的通量密度和脉冲持续时间可以使价电子完整的空心原子数目比例达到极高.
    X-ray transparency occurs during the interaction of X-ray free electron laser with matter. The study of the mechanism of X-ray transparency is of great value for understanding the interaction between X-ray free electron laser and matter. In this paper, the main ionization modes from neutral neon atom till bare nucleus at different flux densities are determined based on the 2000 eV photoionization cross sections and the Auger decay rates of various neon atoms (ions), calculated by the Flexible Atomic Code program. By establishing and solving the rate equations, the formulas of the proportions of various electronic configurations of neon in the main ionization mode are obtained. The proportions of electron configurations in the main ionization modes and the atomic average photoionization cross sections at flux densities of 2000 and 10000 -2fs-1 are calculated by using the formulas. The ratios of the number of hollow atoms to that of complete valence electrons at any time under different flux density laser irradiations are calculated. It is found that both the bare nuclei and the hollow atoms cause X-ray transparency, and a relatively high ratio of the number of hollow atoms to that of complete valence electrons can be achieved by choosing appropriate flux density and pulse duration.
      通信作者: 蒋刚, gjiang@scu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11474208)资助的课题.
      Corresponding author: Jiang Gang, gjiang@scu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.11474208).
    [1]

    Pellegrini C, Marinelli A, Reiche S 2016 Rev. Mod. Phys. 88 015006

    [2]

    Gahl C, Azima A, Beye M, Deppe M, Dbrich K, Hasslinger U, Hennies F, Melnikov A, Nagasono M, Pietzsch A, Wolf M, Wurth W, Fhlisch A 2008 Nat. Photon. 2 165

    [3]

    Yoneda H, Inubushi Y, Yabashi M, Katayama T, Ishikawa T, Ohashi H, Yumoto H, Yamauchi K, Mimura H, Kitamura H 2014 Nat. Commun. 5 5080

    [4]

    Nagler, B, Zastrau U, Fustlin R R, Vinko S M, Whitcher T, Nelson A J, Sobierajski R, Krzywinski J, Chalupsky J, Abreu E, Bajt S, Bornath T, Burian T, Chapman H, Cihelka J, Dppner T, Dsterer S, Dzelzainis T, Fajardo M, Frster E, Fortmann C, Galtier E, Glenzer S H, Gde S, Gregori G, Hajkova V, Heimann P, Juha L, Jurek M, Khattak F Y, Khorsand A R, Klinger D, Kozlova M, Laarmann T, Lee H J, Lee R, Meiwes-Broer K H, Mercere P, Murphy W J, Przystawik A, Redmer R, Reinholz H, Riley D, Rpke G, Rosmej F, Saksl K, Schott R, Thiele R, Tiggesbumker J, Toleikis S, Tschentscher T, Uschmann I, Vollmer H J, Wark J S 2009 Nat. Phys. 5 693

    [5]

    Young L, Kanter E P, Krssig B, Li Y, March A M, Pratt S T, Santra R, Southworth S H, Rohringer N, DiMauro L F, Doumy G, Roedig C A, Berrah N, Fang L, Hoener M, Bucksbaum P H, Cryan J P, Ghimire S, Glownia J M, Reis D A, Bozek J D, Bostedt C, Messerschmidt M 2010 Nature 466 56

    [6]

    Chapman H N 2015 Synchrotron. Radiat. News 28 20

    [7]

    Wei L, Wacker D, Gati C, Han G W, James D, Wang D, Nelson G, Weierstall U, Katritch V, Barty A, Zatsepin N A, Li D, Messerschmidt M, Boutet S, Williams G J, Koglin J E, Seibert M M, Chong W, Shah S T A, Basu S, Fromme R, Kupitz C, Rendek K N, Grotjohann I, Fromme P, Kirian R A, Beyerlein K R, White T A, Chapman H N, Caffrey M, Spence J C H, Stevens R C, Cherezov V 2013 Science 342 1521

    [8]

    Boutet S, Lomb L, Williams G J, Barends T R M, Aquila A, Doak R B, Weierstall U, de Ponte D P, Steinbrener J, Shoeman R L, Messerschmidt M, Barty A, White T A, Kassemeyer S, Kirian R A, Seibert M M, Montanez P A, Kenney C, Herbst R, Hart P, Pines J, Haller G, Gruner S M, Philipp H T, Tate M W, Hromalik M, Koerner L J, Bakel N V, Morse J, Ghonsalves W, Arnlund D, Bogan M J, Caleman C, Fromme R, Hampton C Y, Hunter M S, Johansson L C, Katona G, Kupitz C, Liang M, Martin A V, Nass K, Redecke L, Stellato F, Timneanu N, Wang D, Zatsepin N A, Schafer D, Defever J, Neutze R, Fromme P, Spence J C H, Chapman H N, Schlichting I 2012 Science 337 362

    [9]

    Neutze R, Wouts R, van der Spoel D, Weckert E, Hajdu J 2000 Nature 406 752

    [10]

    Son S K, Young L, Santra R 2011 Phys. Rev. A 83 033402

    [11]

    Gu M F 2008 Can. J. Phys. 86 675

  • [1]

    Pellegrini C, Marinelli A, Reiche S 2016 Rev. Mod. Phys. 88 015006

    [2]

    Gahl C, Azima A, Beye M, Deppe M, Dbrich K, Hasslinger U, Hennies F, Melnikov A, Nagasono M, Pietzsch A, Wolf M, Wurth W, Fhlisch A 2008 Nat. Photon. 2 165

    [3]

    Yoneda H, Inubushi Y, Yabashi M, Katayama T, Ishikawa T, Ohashi H, Yumoto H, Yamauchi K, Mimura H, Kitamura H 2014 Nat. Commun. 5 5080

    [4]

    Nagler, B, Zastrau U, Fustlin R R, Vinko S M, Whitcher T, Nelson A J, Sobierajski R, Krzywinski J, Chalupsky J, Abreu E, Bajt S, Bornath T, Burian T, Chapman H, Cihelka J, Dppner T, Dsterer S, Dzelzainis T, Fajardo M, Frster E, Fortmann C, Galtier E, Glenzer S H, Gde S, Gregori G, Hajkova V, Heimann P, Juha L, Jurek M, Khattak F Y, Khorsand A R, Klinger D, Kozlova M, Laarmann T, Lee H J, Lee R, Meiwes-Broer K H, Mercere P, Murphy W J, Przystawik A, Redmer R, Reinholz H, Riley D, Rpke G, Rosmej F, Saksl K, Schott R, Thiele R, Tiggesbumker J, Toleikis S, Tschentscher T, Uschmann I, Vollmer H J, Wark J S 2009 Nat. Phys. 5 693

    [5]

    Young L, Kanter E P, Krssig B, Li Y, March A M, Pratt S T, Santra R, Southworth S H, Rohringer N, DiMauro L F, Doumy G, Roedig C A, Berrah N, Fang L, Hoener M, Bucksbaum P H, Cryan J P, Ghimire S, Glownia J M, Reis D A, Bozek J D, Bostedt C, Messerschmidt M 2010 Nature 466 56

    [6]

    Chapman H N 2015 Synchrotron. Radiat. News 28 20

    [7]

    Wei L, Wacker D, Gati C, Han G W, James D, Wang D, Nelson G, Weierstall U, Katritch V, Barty A, Zatsepin N A, Li D, Messerschmidt M, Boutet S, Williams G J, Koglin J E, Seibert M M, Chong W, Shah S T A, Basu S, Fromme R, Kupitz C, Rendek K N, Grotjohann I, Fromme P, Kirian R A, Beyerlein K R, White T A, Chapman H N, Caffrey M, Spence J C H, Stevens R C, Cherezov V 2013 Science 342 1521

    [8]

    Boutet S, Lomb L, Williams G J, Barends T R M, Aquila A, Doak R B, Weierstall U, de Ponte D P, Steinbrener J, Shoeman R L, Messerschmidt M, Barty A, White T A, Kassemeyer S, Kirian R A, Seibert M M, Montanez P A, Kenney C, Herbst R, Hart P, Pines J, Haller G, Gruner S M, Philipp H T, Tate M W, Hromalik M, Koerner L J, Bakel N V, Morse J, Ghonsalves W, Arnlund D, Bogan M J, Caleman C, Fromme R, Hampton C Y, Hunter M S, Johansson L C, Katona G, Kupitz C, Liang M, Martin A V, Nass K, Redecke L, Stellato F, Timneanu N, Wang D, Zatsepin N A, Schafer D, Defever J, Neutze R, Fromme P, Spence J C H, Chapman H N, Schlichting I 2012 Science 337 362

    [9]

    Neutze R, Wouts R, van der Spoel D, Weckert E, Hajdu J 2000 Nature 406 752

    [10]

    Son S K, Young L, Santra R 2011 Phys. Rev. A 83 033402

    [11]

    Gu M F 2008 Can. J. Phys. 86 675

  • [1] 聂勇敢, 高梓宸, 佟亚军, 范家东, 刘功发, 江怀东. 上海软X射线自由电子激光单脉冲成像定时的设计与实现.  , 2024, 73(12): 120701. doi: 10.7498/aps.73.20240383
    [2] 张少军, 郭智, 成加皿, 王勇, 陈家华, 刘志. 高重频硬X射线自由电子激光脉冲到达时间诊断方法研究.  , 2023, 72(10): 105203. doi: 10.7498/aps.72.20222424
    [3] 沈百飞, 吉亮亮, 张晓梅, 步志刚, 徐建彩. 强场X射线激光物理.  , 2021, 70(8): 084101. doi: 10.7498/aps.70.20210096
    [4] 张秉章, 宋张勇, 刘璇, 钱程, 方兴, 邵曹杰, 王伟, 刘俊亮, 徐俊奎, 冯勇, 朱志超, 郭艳玲, 陈林, 孙良亭, 杨治虎, 于得洋. 低能高电荷态${\boldsymbol{ {\rm{O}}^{q+}}}$离子与Al表面作用产生的X射线.  , 2021, 70(19): 193201. doi: 10.7498/aps.70.20210757
    [5] 马堃, 颉录有, 张登红, 董晨钟, 屈一至. 氖原子光电子角分布的理论计算.  , 2016, 65(8): 083201. doi: 10.7498/aps.65.083201
    [6] 安红海, 王琛, 方智恒, 熊俊, 孙今人, 王伟, 傅思祖, 乔秀梅, 郑无敌, 张国平. 反射镜双程放大对类氖锗软X射线激光的输出影响研究.  , 2011, 60(10): 104207. doi: 10.7498/aps.60.104207
    [7] 郑炳松, 孙彦乾, 陈俞, 马景龙, 李英骏. 利用单飞秒激光脉冲驱动类氖钛X射线激光的研究.  , 2010, 59(10): 7020-7026. doi: 10.7498/aps.59.7020
    [8] 何彪, 易有根, 江少恩, 唐永建, 郑志坚. 电子碰撞Ga, As, Pt, W和Au原子Lα X射线产生截面的理论计算.  , 2009, 58(10): 6879-6883. doi: 10.7498/aps.58.6879
    [9] 王琛, 张国平, 郑无敌, 乔秀梅, 方智恒, 孙今人, 王伟, 熊俊, 傅思祖, 顾援, 王世绩. 倍频纳秒激光驱动类氖锗X射线激光的研究.  , 2009, 58(9): 6264-6268. doi: 10.7498/aps.58.6264
    [10] 乔秀梅, 郑无敌, 张国平. 激发态之间的电离与复合过程对类氖锗19.6nm X射线激光增益系数的影响.  , 2008, 57(9): 5639-5645. doi: 10.7498/aps.57.5639
    [11] 杨治虎, 宋张勇, 崔 莹, 张红强, 阮芳芳, 邵剑雄, 杜 娟, 刘玉文, 朱可欣, 张小安, 邵曹杰, 卢荣春, 于得洋, 陈熙萌, 蔡晓红. Ar16+和Ar17+离子与Zr作用产生的X射线谱.  , 2008, 57(2): 803-807. doi: 10.7498/aps.57.803
    [12] 乔秀梅, 张国平. 瞬态电子碰撞激发类氖锗19.6nm X射线激光的理论研究.  , 2007, 56(9): 5248-5251. doi: 10.7498/aps.56.5248
    [13] 杨治虎, 宋张勇, 陈熙萌, 张小安, 张艳萍, 赵永涛, 崔 莹, 张红强, 徐 徐, 邵健雄, 于得洋, 蔡晓红. 高电荷态离子Arq+与不同金属靶作用产生的X射线.  , 2006, 55(5): 2221-2227. doi: 10.7498/aps.55.2221
    [14] 赵永涛, 肖国青, 张小安, 杨治虎, 陈熙萌, 李福利, 张艳萍, 张红强, 崔 莹, 绍剑雄, 徐 徐. 空心原子的K-x射线谱.  , 2005, 54(1): 85-88. doi: 10.7498/aps.54.85
    [15] 燕飞, 张杰. 瞬态类氖铁x射线激光抽运脉冲结构的优化计算.  , 2002, 51(11): 2524-2527. doi: 10.7498/aps.51.2524
    [16] 金石琦, 徐至展. 电子与氖原子在10—100eV能量范围内的散射截面.  , 1998, 47(4): 577-582. doi: 10.7498/aps.47.577
    [17] 李玉同, 张启仁, 谷渝秋, 杨上金, 尤永禄, 纪康宁, 赵永宽. 类氖钛软X射线激光空间发射区域研究.  , 1997, 46(6): 1103-1107. doi: 10.7498/aps.46.1103
    [18] 何绍堂, 何安, 淳于书泰, 张启仁, 顾元元, 倪元龙, 余松玉, 周正良. 类氖锗X射线激光光学特性研究.  , 1992, 41(4): 573-577. doi: 10.7498/aps.41.573
    [19] 何绍堂, 何安, 淳于书泰, 沈华忠. 类氖锗的X射线激光增益及其传输特性研究.  , 1990, 39(11): 1751-1757. doi: 10.7498/aps.39.1751
    [20] 何国柱. 电子和X射线激发原子核.  , 1958, 14(4): 289-299. doi: 10.7498/aps.14.289
计量
  • 文章访问数:  5537
  • PDF下载量:  128
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-05
  • 修回日期:  2017-05-25
  • 刊出日期:  2017-08-05

/

返回文章
返回
Baidu
map