搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于DNA自组装的金属纳米结构制备及相关纳米光子学研究

张祎男 王丽华 柳华杰 樊春海

引用本文:
Citation:

基于DNA自组装的金属纳米结构制备及相关纳米光子学研究

张祎男, 王丽华, 柳华杰, 樊春海

DNA self-assembly-based fabrication of metallic nanostructures and related nanophotonics

Zhang Yi-Nan, Wang Li-Hua, Liu Hua-Jie, Fan Chun-Hai
PDF
导出引用
  • 纳米光子学是研究光在纳米尺度下的行为以及光和纳米材料相互作用的一门科学.金属纳米材料凭借其独特的表面等离子体效应,可以在衍射极限以下对光进行传递和聚焦,因而是纳米光子学研究的重点.大量研究表明,通过调控金属纳米材料的形貌和成分可以控制表面等离子体的性质,从而对光进行可控调节.近年来,随着DNA纳米技术的发展,又为纳米光子学的发展带来了新的机遇.首先,人们发现不同的DNA碱基排列可以调控金属纳米颗粒的成长,从而影响金属纳米颗粒的形貌和成分.此外,利用DNA自组装技术,可以将金属纳米颗粒组装成为有序可控的纳米结构.因此,基于DNA的纳米光子学研究近年来发展十分迅速.在此背景下,本文对相关研究进行归纳与总结,以期吸引更多研究人员的关注,推动该领域的进一步发展.本文首先介绍了金属纳米结构基于表面等离体实现突破光学衍射极限的原理,然后按照DNA对金属纳米结构的形貌或成分影响方式的不同分成若干部分,对基于DNA的纳米光子学做了系统的综述,最后展望了未来可能的发展方向.
    Nanophotonics focuses on the study of the behavior of light and the interaction between light and matter on a nanometer scale. It has often involved metallic nanostructures which can concentrate and guide the light beyond the diffraction limit due to the unique surface plasmons (SPs). Manipulation of light can be accomplished through controlling the morphologies and components of metallic nanostructures to incur special surface plasmons. However, it is still a severe challenge to achieve exquisite control over the morphologies or components of metallic nanostructures: chemical methods can provide anisotropic but highly symmetric metallic nanostructures; lithographic methods have a limited resolution, especially for three-dimensional metallic nanostructures. By comparison, DNA self-assembly-based fabrication of metallic nanostructures is not restricted to these confinements. With the high-fidelity Waston-Crick base pairing, DNA can self-assemble into arbitrary shapes ranging from the simplest double strands to the most sophisticated DNA origami. Due to the electrostatic interactions between negatively charged phosphate backbones and positively charged metal ions, DNA of any shapes can affect the metal ions or atoms to a certain degree. Depending on the shape and base, DNA self-assembly nanostructures can exert different influences on the growth of metallic nanoparticles, which in turn gives rise to deliberately controllable metallic nanostructures. Besides, DNA self-assembly nanostructures can act as ideal templates for the organization of metallic nanoparticles to construct special metallic nanostructures. In this case, DNA-modified metallic nanoparticles are immobilized on DNA self-assembly nanostructures carrying complementary sticky ends. The geometry and component arrangements of metallic nanostructures both can be precisely dictated on the DNA nanostructures by programming the sticky end arrays. Complicated metallic nanostructures which can be hardly fabricated with conventional chemical or lithographic methods have been readily prepared with the DNA self-assembly-based fabrication method, thereby greatly promoting the development of nanophotonics. Therefore, the studies of DNA self-assembly-based fabrication of metallic nanostructures and related nanophotonics have received rapidly growing attention in recent years. This review first gives a brief introduction of the mechanism for breaking the diffraction limit of light with metallic nanostructures based on SPs. Then we give a systematic review on DNA self-assembly-based fabrication of metallic nanostructures and related nanophotonics, which is divided into several parts according to the different pathways by which DNA self-assembly can influence the morphologies or components of metallic nanostructures. Finally, the remaining problems and limitations for the existing DNA self-assembly-based fabrication of metallic nanostructures are presented and an outlook on the future trend of the field is given as well.
      通信作者: 柳华杰, liuhuajie@sinap.ac.cn;fchh@sinap.ac.cn ; 樊春海, liuhuajie@sinap.ac.cn;fchh@sinap.ac.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2013CB932803)、国家自然科学基金 (批准号:21473236,31371015)和中国科学院青年创新促进会资助的课题.
      Corresponding author: Liu Hua-Jie, liuhuajie@sinap.ac.cn;fchh@sinap.ac.cn ; Fan Chun-Hai, liuhuajie@sinap.ac.cn;fchh@sinap.ac.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CB932803), the National Natural Science Foundation of China (Grant Nos. 21473236, 31371015), and the Youth Innovation Promotion Association of Chinese Academy of Sciences.
    [1]

    Schuller J A, Barnard E S, Cai W, Jun Y C, White J S, Brongersma M L 2010 Nat. Mater. 9 193

    [2]

    Braun E, Eichen Y, Sivan U, Ben-Yoseph G 1998 Nature 391 775

    [3]

    Wang Z, Tang L, Tan L H, Li J, Lu Y 2012 Angew. Chem. Int. Ed. 51 9078

    [4]

    Lee J H, Kim G H, Nam J M 2012 J. Am. Chem. Soc. 134 5456

    [5]

    Song T, Tang L, Tan L H, Wang X, Satyavolu N S, Xing H, Wang Z, Li J, Liang H, Lu Y 2015 Angew. Chem. Int. Ed. 54 8114

    [6]

    Alivisatos A P, Johnsson K P, Peng X, Wilson T E, Loweth C J, Bruchez M P, Schultz Jr P G 1996 Nature 382 609

    [7]

    Mirkin C A, Letsinger R L, Mucic R C, Storhoff J J 1996 Nature 382 607

    [8]

    Pinheiro A V, Han D, Shih W M, Yan H 2011 Nat. Nanotechnol. 6 763

    [9]

    Chao J, Zhang Y, Zhu D, Liu B, Cui C, Su S, Fan C, Wang L 2016 Sci. China: Chem. 59 730

    [10]

    Lan X, Lu X, Shen C, Ke Y, Ni W, Wang Q 2015 J. Am. Chem. Soc. 137 457

    [11]

    Acuna G, Moller F, Holzmeister P, Beater S, Lalkens B, Tinnefeld P 2012 Science 338 506

    [12]

    Murphy C J, Thompson L B, Chernak D J, Yang J A, Sivapalan S T, Boulos S P, Huang J Y, Alkilany A M, Sisco P N 2011 Curr. Opin. Colloid Interf. Sci. 16 128

    [13]

    Feng L, Romulus J, Li M, Sha R, Royer J, Wu K T, Xu Q, Seeman N C, Weck M, Chaikin P 2013 Nat. Mater. 12 747

    [14]

    Hedrick J L, Brown K A, Kluender E J, Cabezas M D, Chen P C, Mirkin C A 2016 ACS Nano 10 3144

    [15]

    Kumar A, Hwang J H, Kumar S, Nam J M 2013 Chem. Commun. 49 2597

    [16]

    Tan S J, Campolongo M J, Luo D, Cheng W 2011 Nat. Nanotechnol. 6 268

    [17]

    Kuzyk A, Schreiber R, Fan Z, Pardatscher G, Roller M, Hogele A, Simmel F, Govorov O, Liedl T 2012 Nature 483 311

    [18]

    Thacker V V, Herrmann L O, Sigle D O, Zhang T, Liedl T, Baumberg J J, Keyser U F 2014 Nat. Commun. 5 3448

    [19]

    Roller E M, Khorashad L K, Fedoruk M, Schreiber R, Govorov O, Liedl T 2015 Nano Lett. 15 1368

    [20]

    Kallenbach N R, Ma R I, Seeman N C 1983 Nature 305 829

    [21]

    Seeman N C 2003 Nature 421 427

    [22]

    Rothemund P W 2006 Nature 440 297

    [23]

    Nangreave J, Han D, Liu Y, Yan H 2010 Curr. Opin. Chem. Biol. 14 608

    [24]

    Chen J, Seeman N C 1991 Nature 350 631

    [25]

    Fu T, Seeman N C 1993 Biochemistry 32 3211

    [26]

    Mao C D, Sun W, Seeman N C 1997 Nature 386 137

    [27]

    Ma R I, Kallenbach N R, Sheardy R D, Petrillo M L, Seeman N C 1986 Nucl. Acids Res. 14 9745

    [28]

    Wang X, Seeman N C 2007 J. Am. Chem. Soc. 129 8169

    [29]

    LaBean T H, Yan H, Kopatsch J, Liu F R, Winfree E, Reif J H, Seeman N C 2000 J. Am. Chem. Soc. 122 1848

    [30]

    Yan H, Park S H, Finkelstein G, Reif J H, LaBean T H 2003 Science 301 1882

    [31]

    Yin P, Hariadi R F, Sahu S, Choi H M, Park S H, Labean T H, Reif J H 2008 Science 321 824

    [32]

    Douglas S M, Dietz H, Liedl T, Hogberg B, Graf F, Shih W M 2009 Nature 459 414

    [33]

    Ke Y, Douglas S M, Liu M, Sharma J, Cheng A, Leung A, Liu Y, Shih W M, Yan H 2009 J. Am. Chem. Soc. 131 15903

    [34]

    Liedl T, Hogberg B, Tytell J, Ingber D E, Shih W M 2010 Nat. Nanotechnol. 5 520

    [35]

    Veneziano R, Ratanalert S, Zhang K, Zhang F, Yan H, Chiu W, Bathe M 2016 Science 352 1534

    [36]

    Benson E, Mohammed A, Gardell J, Masich S, Czeizler E, Orponen P, Hogberg B 2015 Nature 523 441

    [37]

    Wang Z, Zhang J, Ekman J M, Kenis P J, Lu Y 2010 Nano Lett. 10 1886

    [38]

    Tan L H, Yue Y, Satyavolu N S, Ali A S, Wang Z, Wu Y, Lu Y 2015 J. Am. Chem. Soc. 137 14456

    [39]

    Wu J, Tan L H, Hwang K, Xing H, Wu P, Li W, Lu Y 2014 J. Am. Chem. Soc. 136 15195

    [40]

    Satyavolu N S, Tan L H, Lu Y 2016 J. Am. Chem. Soc. 138 16542

    [41]

    Shen J, Xu L, Wang C, Pei H, Tai R, Song S, Huang Q, Fan C, Chen G 2014 Angew. Chem. Int. Ed. 53 8338

    [42]

    Lee J H, You M H, Kim G H, Nam J M 2014 Nano Lett. 14 6217

    [43]

    Shen J, Su J, Yan J, Zhao B, Wang D, Wang S, Li K, Liu M, He Y, Mathur S, Fan C, Song S 2014 Nano Res. 8 731

    [44]

    Xu L, Wang G, Shen J, Geng H, Li W, Wu L, Gao S, Wang J, Wang L, Fan C, Chen G 2016 Nanoscale 8 9337

    [45]

    Lim D K, Jeon K S, Hwang J H, Kim H, Kwon S, Suh Y D, Nam J M 2011 Nat. Nanotechnol. 6 452

    [46]

    Zhao B, Shen J, Chen S, Wang D, Li F, Mathur S, Song S, Fan C 2014 Chem. Sci. 5 4460

    [47]

    Hu C, Shen J, Yan J, Zhong J, Qin W, Liu R, Aldalbahi A, Zuo X, Song S, Fan C, He D 2016 Nanoscale 8 2090

    [48]

    Li J, Wei C, Ma W, An Q, Guo J, Hu J, Wang C 2012 J. Mater. Chem. 22 12100

    [49]

    Monson C F, Woolley A T 2003 Nano Lett. 3 359

    [50]

    Gu Q, Cheng C, Haynie D T 2005 Nanotechnology 16 1358

    [51]

    Liu D, Park S H, Reif J H, LaBean T H 2004 Proc. Natl. Acad. Sci. USA 101 717

    [52]

    Liu J, Geng Y, Pound E, Gyawali S, Ashton J R, Hickey J, Woolley A T, Harb J N 2011 ACS Nano 5 2240

    [53]

    Geng Y, Pearson A C, Gates E P, Uprety B, Davis R C, Harb J N, Woolley A T 2013 Langmuir 29 3482

    [54]

    Pilo-Pais M, Goldberg S, Samano E, Labean T H, Finkelstein G 2011 Nano Lett. 11 3489

    [55]

    Pal S, Varghese R, Deng Z, Zhao Z, Kumar A, Yan H, Liu Y 2011 Angew. Chem. Int. Ed. 50 4176

    [56]

    Xiao S J, Liu F R, Rosen A E, Hainfeld J F, Seeman N C, Musier-Forsyth K, Kiehl R A 2002 J. Nanopart. Res. 4 313

    [57]

    Zheng J, Constantinou P E, Micheel C, Alivisatos A P, Kiehl R A, Seeman N C 2006 Nano Lett. 6 1502

    [58]

    Sharma J, Chhabra R, Liu Y, Ke Y, Yan H 2006 Angew. Chem. Int. Ed. 45 730

    [59]

    Le J D, Pinto Y, Seeman N C, Musier-Forsyth K, Taton T A, Kiehl R A 2004 Nano Lett. 4 2343

    [60]

    Zhang J, Liu Y, Ke Y, Yan H 2006 Nano Lett. 6 248

    [61]

    Zhang C, Li X, Tian C, Yu G, Li Y, Jiang W, Mao C 2014 ACS Nano 8 1130

    [62]

    Li Y, Liu Z, Yu G, Jiang W, Mao C 2015 J. Am. Chem. Soc. 137 4320

    [63]

    Aldaye F A, Sleiman H F 2007 J. Am. Chem. Soc. 129 4130

    [64]

    Elbaz J, Cecconello A, Fan Z, Govorov A O, Willner I 2013 Nat. Commun. 4 2000

    [65]

    Ding B, Cabrini S, Zuckermann R, Bokor J 2009 J. Vac. Sci. Technol. B 27 184

    [66]

    Sharma J, Chhabra R, Cheng A, Brownell J, Liu Y, Yan H 2009 Science 323 112

    [67]

    Sharma J, Chhabra R, Andersen C S, Gothelf K V, Yan H, Liu Y 2008 J. Am. Chem. Soc. 130 7820

    [68]

    Ding B, Deng Z, Yan H, Cabrini S, Zuckermann R, Bokor J 2010 J. Am. Chem. Soc. 132 3248

    [69]

    Pal S, Deng Z, Ding B, Yan H, Liu Y 2010 Angew. Chem. Int. Ed. 49 2700

    [70]

    Pal S, Deng Z, Wang H, Zou S, Liu Y, Yan H 2011 J. Am. Chem. Soc. 133 17606

    [71]

    Schreiber R, Do J, Roller E M, Zhang T, Schuller V J, Nickels P C, Feldmann J, Liedl T 2014 Nat. Nanotechnol. 9 74

    [72]

    Puchkova A, Vietz C, Pibiri E, Wunsch B, Sanz M, Acuna P, Tinnefeld P 2015 Nano Lett. 15 8354

    [73]

    Ko S H, Du K, Liddle J A 2013 Angew. Chem. Int. Ed. 52 1193

    [74]

    Pellegrotti J V, Acuna G P, Puchkova A, Holzmeister P, Gietl A, Lalkens B, Stefani D, Tinnefeld P 2014 Nano Lett. 14 2831

    [75]

    Lan X, Chen Z, Dai G, Lu X, Ni W, Wang Q 2013 J. Am. Chem. Soc. 135 11441

    [76]

    Urban J, Dutta K, Wang P, Duan X, Shen X, Ding B, Ke Y, Liu N 2016 J. Am. Chem. Soc. 138 5495

    [77]

    Shen C, Lan X, Zhu C, Zhang W, Wang L, Wang Q 2017 Adv. Mater. 29 1606533

    [78]

    Zhang Y, Chao J, Liu H, Wang F, Su S, Liu B, Zhang L, Shi J, Wang L, Huang W, Wang L, Fan C 2016 Angew. Chem. Int. Ed. 55 8036

    [79]

    Kuzyk A, Schreiber R, Zhang H, Govorov O, Liedl T, Liu N 2014 Nat. Mater. 13 862

    [80]

    Zhou C, Duan X, Liu N 2015 Nat. Commun. 6 8102

    [81]

    Urban J, Zhou C, Duan X, Liu N 2015 Nano Lett. 15 8392

    [82]

    Kuhler P, Roller M, Schreiber R, Liedl T, Lohmuller T, Feldmann J 2014 Nano Lett. 14 2914

    [83]

    Simoncelli S, Roller E M, Urban P, Schreiber R, Turberfield A J, Liedl T, Lohmuller T 2016 ACS Nano 10 9809

    [84]

    Roller M, Argyropoulos C, Hogele A, Liedl T, Pilo-Pais M 2016 Nano Lett. 16 5962

    [85]

    Weller L, Thacker V, Herrmann O, Hemmig A, Lombardi A, Keyser F, Baumberg J 2016 ACS Photon. 3 1589

    [86]

    Zhan P, Dutta P K, Wang P, Song G, Dai M, Zhao S X, Wang Z G, Yin P, Zhang W, Ding B, Ke Y 2017 ACS Nano 11 1172

    [87]

    Lim D K, Jeon K S, Kim H M, Nam J M, Suh Y D 2010 Nat. Mater. 9 60

    [88]

    Yan W, Xu L, Xu C, Ma W, Kuang H, Wang L, Kotov N A 2012 J. Am. Chem. Soc. 134 15114

    [89]

    Li K, Wang K, Qin W, Deng S, Li D, Shi J, Huang Q, Fan C 2015 J. Am. Chem. Soc. 137 4292

    [90]

    Lee K, Cui Y, Lee L P, Irudayaraj J 2014 Nat. Nanotechnol. 9 474

    [91]

    Macfarlane R J, Lee B, Jones M R, Harris N, Schatz G C, Mirkin C A 2011 Science 334 204

    [92]

    Senesi A J, Eichelsdoerfer D J, Macfarlane R J, Jones M R, Auyeung E, Lee B, Mirkin C A 2013 Angew. Chem. Int. Ed. 52 6624

    [93]

    Jones M R, Macfarlane R J, Lee B, Zhang J, Young K L, Senesi A J, Mirkin C A 2010 Nat. Mater. 9 913

    [94]

    Auyeung E, Cutler J I, Macfarlane R J, Jones M R, Wu J S, Liu G, Zhang K, Osberg K D, Mirkin C A 2012 Nat. Nanotechnol. 7 24

    [95]

    Auyeung E, Li T I, Senesi A J, Schmucker A L, Pals B C, de la Cruz M O, Mirkin C A 2014 Nature 505 73

    [96]

    Kim Y, Macfarlane R J, Jones M R, Mirkin C A 2016 Science 351 579

    [97]

    Maye M M, Kumara M T, Nykypanchuk D, Sherman W B, Gang O 2010 Nat. Nanotechnol. 5 116

    [98]

    Zhang Y, Pal S, Srinivasan B, Vo T, Kumar S, Gang O 2015 Nat. Mater. 14 840

    [99]

    Liu W, Tagawa M, Xin H L, Wang T, Emamy H, Li H, Yager K G, Starr F W, Tkachenko A V, Gang O 2016 Science 351 582

    [100]

    Gopinath A, Miyazono E, Faraon A, Rothemund P W 2016 Nature 535 401

    [101]

    Hung A M, Micheel C M, Bozano L D, Osterbur L W, Wallraff G M, Cha J N 2010 Nat. Nanotechnol. 5 121

  • [1]

    Schuller J A, Barnard E S, Cai W, Jun Y C, White J S, Brongersma M L 2010 Nat. Mater. 9 193

    [2]

    Braun E, Eichen Y, Sivan U, Ben-Yoseph G 1998 Nature 391 775

    [3]

    Wang Z, Tang L, Tan L H, Li J, Lu Y 2012 Angew. Chem. Int. Ed. 51 9078

    [4]

    Lee J H, Kim G H, Nam J M 2012 J. Am. Chem. Soc. 134 5456

    [5]

    Song T, Tang L, Tan L H, Wang X, Satyavolu N S, Xing H, Wang Z, Li J, Liang H, Lu Y 2015 Angew. Chem. Int. Ed. 54 8114

    [6]

    Alivisatos A P, Johnsson K P, Peng X, Wilson T E, Loweth C J, Bruchez M P, Schultz Jr P G 1996 Nature 382 609

    [7]

    Mirkin C A, Letsinger R L, Mucic R C, Storhoff J J 1996 Nature 382 607

    [8]

    Pinheiro A V, Han D, Shih W M, Yan H 2011 Nat. Nanotechnol. 6 763

    [9]

    Chao J, Zhang Y, Zhu D, Liu B, Cui C, Su S, Fan C, Wang L 2016 Sci. China: Chem. 59 730

    [10]

    Lan X, Lu X, Shen C, Ke Y, Ni W, Wang Q 2015 J. Am. Chem. Soc. 137 457

    [11]

    Acuna G, Moller F, Holzmeister P, Beater S, Lalkens B, Tinnefeld P 2012 Science 338 506

    [12]

    Murphy C J, Thompson L B, Chernak D J, Yang J A, Sivapalan S T, Boulos S P, Huang J Y, Alkilany A M, Sisco P N 2011 Curr. Opin. Colloid Interf. Sci. 16 128

    [13]

    Feng L, Romulus J, Li M, Sha R, Royer J, Wu K T, Xu Q, Seeman N C, Weck M, Chaikin P 2013 Nat. Mater. 12 747

    [14]

    Hedrick J L, Brown K A, Kluender E J, Cabezas M D, Chen P C, Mirkin C A 2016 ACS Nano 10 3144

    [15]

    Kumar A, Hwang J H, Kumar S, Nam J M 2013 Chem. Commun. 49 2597

    [16]

    Tan S J, Campolongo M J, Luo D, Cheng W 2011 Nat. Nanotechnol. 6 268

    [17]

    Kuzyk A, Schreiber R, Fan Z, Pardatscher G, Roller M, Hogele A, Simmel F, Govorov O, Liedl T 2012 Nature 483 311

    [18]

    Thacker V V, Herrmann L O, Sigle D O, Zhang T, Liedl T, Baumberg J J, Keyser U F 2014 Nat. Commun. 5 3448

    [19]

    Roller E M, Khorashad L K, Fedoruk M, Schreiber R, Govorov O, Liedl T 2015 Nano Lett. 15 1368

    [20]

    Kallenbach N R, Ma R I, Seeman N C 1983 Nature 305 829

    [21]

    Seeman N C 2003 Nature 421 427

    [22]

    Rothemund P W 2006 Nature 440 297

    [23]

    Nangreave J, Han D, Liu Y, Yan H 2010 Curr. Opin. Chem. Biol. 14 608

    [24]

    Chen J, Seeman N C 1991 Nature 350 631

    [25]

    Fu T, Seeman N C 1993 Biochemistry 32 3211

    [26]

    Mao C D, Sun W, Seeman N C 1997 Nature 386 137

    [27]

    Ma R I, Kallenbach N R, Sheardy R D, Petrillo M L, Seeman N C 1986 Nucl. Acids Res. 14 9745

    [28]

    Wang X, Seeman N C 2007 J. Am. Chem. Soc. 129 8169

    [29]

    LaBean T H, Yan H, Kopatsch J, Liu F R, Winfree E, Reif J H, Seeman N C 2000 J. Am. Chem. Soc. 122 1848

    [30]

    Yan H, Park S H, Finkelstein G, Reif J H, LaBean T H 2003 Science 301 1882

    [31]

    Yin P, Hariadi R F, Sahu S, Choi H M, Park S H, Labean T H, Reif J H 2008 Science 321 824

    [32]

    Douglas S M, Dietz H, Liedl T, Hogberg B, Graf F, Shih W M 2009 Nature 459 414

    [33]

    Ke Y, Douglas S M, Liu M, Sharma J, Cheng A, Leung A, Liu Y, Shih W M, Yan H 2009 J. Am. Chem. Soc. 131 15903

    [34]

    Liedl T, Hogberg B, Tytell J, Ingber D E, Shih W M 2010 Nat. Nanotechnol. 5 520

    [35]

    Veneziano R, Ratanalert S, Zhang K, Zhang F, Yan H, Chiu W, Bathe M 2016 Science 352 1534

    [36]

    Benson E, Mohammed A, Gardell J, Masich S, Czeizler E, Orponen P, Hogberg B 2015 Nature 523 441

    [37]

    Wang Z, Zhang J, Ekman J M, Kenis P J, Lu Y 2010 Nano Lett. 10 1886

    [38]

    Tan L H, Yue Y, Satyavolu N S, Ali A S, Wang Z, Wu Y, Lu Y 2015 J. Am. Chem. Soc. 137 14456

    [39]

    Wu J, Tan L H, Hwang K, Xing H, Wu P, Li W, Lu Y 2014 J. Am. Chem. Soc. 136 15195

    [40]

    Satyavolu N S, Tan L H, Lu Y 2016 J. Am. Chem. Soc. 138 16542

    [41]

    Shen J, Xu L, Wang C, Pei H, Tai R, Song S, Huang Q, Fan C, Chen G 2014 Angew. Chem. Int. Ed. 53 8338

    [42]

    Lee J H, You M H, Kim G H, Nam J M 2014 Nano Lett. 14 6217

    [43]

    Shen J, Su J, Yan J, Zhao B, Wang D, Wang S, Li K, Liu M, He Y, Mathur S, Fan C, Song S 2014 Nano Res. 8 731

    [44]

    Xu L, Wang G, Shen J, Geng H, Li W, Wu L, Gao S, Wang J, Wang L, Fan C, Chen G 2016 Nanoscale 8 9337

    [45]

    Lim D K, Jeon K S, Hwang J H, Kim H, Kwon S, Suh Y D, Nam J M 2011 Nat. Nanotechnol. 6 452

    [46]

    Zhao B, Shen J, Chen S, Wang D, Li F, Mathur S, Song S, Fan C 2014 Chem. Sci. 5 4460

    [47]

    Hu C, Shen J, Yan J, Zhong J, Qin W, Liu R, Aldalbahi A, Zuo X, Song S, Fan C, He D 2016 Nanoscale 8 2090

    [48]

    Li J, Wei C, Ma W, An Q, Guo J, Hu J, Wang C 2012 J. Mater. Chem. 22 12100

    [49]

    Monson C F, Woolley A T 2003 Nano Lett. 3 359

    [50]

    Gu Q, Cheng C, Haynie D T 2005 Nanotechnology 16 1358

    [51]

    Liu D, Park S H, Reif J H, LaBean T H 2004 Proc. Natl. Acad. Sci. USA 101 717

    [52]

    Liu J, Geng Y, Pound E, Gyawali S, Ashton J R, Hickey J, Woolley A T, Harb J N 2011 ACS Nano 5 2240

    [53]

    Geng Y, Pearson A C, Gates E P, Uprety B, Davis R C, Harb J N, Woolley A T 2013 Langmuir 29 3482

    [54]

    Pilo-Pais M, Goldberg S, Samano E, Labean T H, Finkelstein G 2011 Nano Lett. 11 3489

    [55]

    Pal S, Varghese R, Deng Z, Zhao Z, Kumar A, Yan H, Liu Y 2011 Angew. Chem. Int. Ed. 50 4176

    [56]

    Xiao S J, Liu F R, Rosen A E, Hainfeld J F, Seeman N C, Musier-Forsyth K, Kiehl R A 2002 J. Nanopart. Res. 4 313

    [57]

    Zheng J, Constantinou P E, Micheel C, Alivisatos A P, Kiehl R A, Seeman N C 2006 Nano Lett. 6 1502

    [58]

    Sharma J, Chhabra R, Liu Y, Ke Y, Yan H 2006 Angew. Chem. Int. Ed. 45 730

    [59]

    Le J D, Pinto Y, Seeman N C, Musier-Forsyth K, Taton T A, Kiehl R A 2004 Nano Lett. 4 2343

    [60]

    Zhang J, Liu Y, Ke Y, Yan H 2006 Nano Lett. 6 248

    [61]

    Zhang C, Li X, Tian C, Yu G, Li Y, Jiang W, Mao C 2014 ACS Nano 8 1130

    [62]

    Li Y, Liu Z, Yu G, Jiang W, Mao C 2015 J. Am. Chem. Soc. 137 4320

    [63]

    Aldaye F A, Sleiman H F 2007 J. Am. Chem. Soc. 129 4130

    [64]

    Elbaz J, Cecconello A, Fan Z, Govorov A O, Willner I 2013 Nat. Commun. 4 2000

    [65]

    Ding B, Cabrini S, Zuckermann R, Bokor J 2009 J. Vac. Sci. Technol. B 27 184

    [66]

    Sharma J, Chhabra R, Cheng A, Brownell J, Liu Y, Yan H 2009 Science 323 112

    [67]

    Sharma J, Chhabra R, Andersen C S, Gothelf K V, Yan H, Liu Y 2008 J. Am. Chem. Soc. 130 7820

    [68]

    Ding B, Deng Z, Yan H, Cabrini S, Zuckermann R, Bokor J 2010 J. Am. Chem. Soc. 132 3248

    [69]

    Pal S, Deng Z, Ding B, Yan H, Liu Y 2010 Angew. Chem. Int. Ed. 49 2700

    [70]

    Pal S, Deng Z, Wang H, Zou S, Liu Y, Yan H 2011 J. Am. Chem. Soc. 133 17606

    [71]

    Schreiber R, Do J, Roller E M, Zhang T, Schuller V J, Nickels P C, Feldmann J, Liedl T 2014 Nat. Nanotechnol. 9 74

    [72]

    Puchkova A, Vietz C, Pibiri E, Wunsch B, Sanz M, Acuna P, Tinnefeld P 2015 Nano Lett. 15 8354

    [73]

    Ko S H, Du K, Liddle J A 2013 Angew. Chem. Int. Ed. 52 1193

    [74]

    Pellegrotti J V, Acuna G P, Puchkova A, Holzmeister P, Gietl A, Lalkens B, Stefani D, Tinnefeld P 2014 Nano Lett. 14 2831

    [75]

    Lan X, Chen Z, Dai G, Lu X, Ni W, Wang Q 2013 J. Am. Chem. Soc. 135 11441

    [76]

    Urban J, Dutta K, Wang P, Duan X, Shen X, Ding B, Ke Y, Liu N 2016 J. Am. Chem. Soc. 138 5495

    [77]

    Shen C, Lan X, Zhu C, Zhang W, Wang L, Wang Q 2017 Adv. Mater. 29 1606533

    [78]

    Zhang Y, Chao J, Liu H, Wang F, Su S, Liu B, Zhang L, Shi J, Wang L, Huang W, Wang L, Fan C 2016 Angew. Chem. Int. Ed. 55 8036

    [79]

    Kuzyk A, Schreiber R, Zhang H, Govorov O, Liedl T, Liu N 2014 Nat. Mater. 13 862

    [80]

    Zhou C, Duan X, Liu N 2015 Nat. Commun. 6 8102

    [81]

    Urban J, Zhou C, Duan X, Liu N 2015 Nano Lett. 15 8392

    [82]

    Kuhler P, Roller M, Schreiber R, Liedl T, Lohmuller T, Feldmann J 2014 Nano Lett. 14 2914

    [83]

    Simoncelli S, Roller E M, Urban P, Schreiber R, Turberfield A J, Liedl T, Lohmuller T 2016 ACS Nano 10 9809

    [84]

    Roller M, Argyropoulos C, Hogele A, Liedl T, Pilo-Pais M 2016 Nano Lett. 16 5962

    [85]

    Weller L, Thacker V, Herrmann O, Hemmig A, Lombardi A, Keyser F, Baumberg J 2016 ACS Photon. 3 1589

    [86]

    Zhan P, Dutta P K, Wang P, Song G, Dai M, Zhao S X, Wang Z G, Yin P, Zhang W, Ding B, Ke Y 2017 ACS Nano 11 1172

    [87]

    Lim D K, Jeon K S, Kim H M, Nam J M, Suh Y D 2010 Nat. Mater. 9 60

    [88]

    Yan W, Xu L, Xu C, Ma W, Kuang H, Wang L, Kotov N A 2012 J. Am. Chem. Soc. 134 15114

    [89]

    Li K, Wang K, Qin W, Deng S, Li D, Shi J, Huang Q, Fan C 2015 J. Am. Chem. Soc. 137 4292

    [90]

    Lee K, Cui Y, Lee L P, Irudayaraj J 2014 Nat. Nanotechnol. 9 474

    [91]

    Macfarlane R J, Lee B, Jones M R, Harris N, Schatz G C, Mirkin C A 2011 Science 334 204

    [92]

    Senesi A J, Eichelsdoerfer D J, Macfarlane R J, Jones M R, Auyeung E, Lee B, Mirkin C A 2013 Angew. Chem. Int. Ed. 52 6624

    [93]

    Jones M R, Macfarlane R J, Lee B, Zhang J, Young K L, Senesi A J, Mirkin C A 2010 Nat. Mater. 9 913

    [94]

    Auyeung E, Cutler J I, Macfarlane R J, Jones M R, Wu J S, Liu G, Zhang K, Osberg K D, Mirkin C A 2012 Nat. Nanotechnol. 7 24

    [95]

    Auyeung E, Li T I, Senesi A J, Schmucker A L, Pals B C, de la Cruz M O, Mirkin C A 2014 Nature 505 73

    [96]

    Kim Y, Macfarlane R J, Jones M R, Mirkin C A 2016 Science 351 579

    [97]

    Maye M M, Kumara M T, Nykypanchuk D, Sherman W B, Gang O 2010 Nat. Nanotechnol. 5 116

    [98]

    Zhang Y, Pal S, Srinivasan B, Vo T, Kumar S, Gang O 2015 Nat. Mater. 14 840

    [99]

    Liu W, Tagawa M, Xin H L, Wang T, Emamy H, Li H, Yager K G, Starr F W, Tkachenko A V, Gang O 2016 Science 351 582

    [100]

    Gopinath A, Miyazono E, Faraon A, Rothemund P W 2016 Nature 535 401

    [101]

    Hung A M, Micheel C M, Bozano L D, Osterbur L W, Wallraff G M, Cha J N 2010 Nat. Nanotechnol. 5 121

  • [1] 赵颂, 周华, 王淑英, 韩非, 蒋斯涵, 沈向前. 基于金属纳米球等离增强的高效钙钛矿/硅电池设计.  , 2022, 71(3): 038801. doi: 10.7498/aps.71.20211585
    [2] 赵颂, 周华, 王淑英, 韩非, 蒋斯涵, 沈向前. 基于金属纳米球等离增强的高效钙钛矿/硅电池设计.  , 2021, (): . doi: 10.7498/aps.70.20211585
    [3] 皇甫夏虹, 刘双飞, 肖家军, 张蓓, 彭新村. 纳米光子学结构对GaInAsSb p-n结红外光电性能的调控.  , 2021, 70(11): 118501. doi: 10.7498/aps.70.20201829
    [4] 张利胜. 基于金纳米阵列表面等离子体驱动的光催化特性.  , 2021, 70(23): 235202. doi: 10.7498/aps.70.20210424
    [5] 王向贤, 白雪琳, 庞志远, 杨华, 祁云平, 温晓镭. 聚甲基丙烯酸甲酯间隔的金纳米立方体与金膜复合结构的表面增强拉曼散射研究.  , 2019, 68(3): 037301. doi: 10.7498/aps.68.20190054
    [6] 熊志成, 朱丽霖, 刘诚, 高淑梅, 朱健强. 基于纳米天线的多通道高强度定向表面等离子体波激发.  , 2015, 64(24): 247301. doi: 10.7498/aps.64.247301
    [7] 黄洪, 赵青, 焦蛟, 梁高峰, 黄小平. 深亚波长约束的表面等离子体纳米激光器研究.  , 2013, 62(13): 135201. doi: 10.7498/aps.62.135201
    [8] 林瑜, 杨光参, 王艳伟. DNA平衡离子凝聚的动态光散射分析.  , 2013, 62(11): 118702. doi: 10.7498/aps.62.118702
    [9] 李雪莲, 张志东, 王红艳, 熊祖洪, 张中月. 应用平行隔板增强纳米球表面电场.  , 2011, 60(4): 047807. doi: 10.7498/aps.60.047807
    [10] 程木田. 经典光场相干控制金属纳米线表面等离子体传输.  , 2011, 60(11): 117301. doi: 10.7498/aps.60.117301
    [11] 李山, 钟明亮, 张礼杰, 熊祖洪, 张中月. 偏振方向及结构间耦合作用对空心方形银纳米结构表面等离子体共振的影响.  , 2011, 60(8): 087806. doi: 10.7498/aps.60.087806
    [12] 陈华, 汪力. 金属导线偶合THz表面等离子体波.  , 2009, 58(7): 4605-4609. doi: 10.7498/aps.58.4605
    [13] 黄茜, 王京, 曹丽冉, 孙建, 张晓丹, 耿卫东, 熊绍珍, 赵颖. 纳米Ag材料表面等离子体激元引起的表面增强拉曼散射光谱研究.  , 2009, 58(3): 1980-1986. doi: 10.7498/aps.58.1980
    [14] 周仁龙, 陈效双, 曾 勇, 张建标, 陈洪波, 王少伟, 陆 卫, 李宏建, 夏 辉, 王玲玲. 金属光子晶体平板的超强透射及其表面等离子体共振.  , 2008, 57(6): 3506-3513. doi: 10.7498/aps.57.3506
    [15] 高建霞, 宋国峰, 郭宝山, 甘巧强, 陈良惠. 表面等离子体调制的纳米孔径垂直腔面发射激光器.  , 2007, 56(10): 5827-5830. doi: 10.7498/aps.56.5827
    [16] 高绪团, 傅 雪, 宋 骏, 刘德胜, 解士杰. 位置涨落对DNA分子电子结构的影响.  , 2006, 55(2): 952-956. doi: 10.7498/aps.55.952
    [17] 刘玉颖, 窦硕星, 王鹏业, 谢 平, 王渭池. 应用分子梳技术对DNA与组蛋白相互作用的研究.  , 2005, 54(2): 622-627. doi: 10.7498/aps.54.622
    [18] 宋 骏, 陈 雷, 刘德胜, 解士杰. DNA分子能带结构与电子态研究.  , 2004, 53(8): 2792-2795. doi: 10.7498/aps.53.2792
    [19] 董瑞新, 闫循领, 庞小峰, 刘盛纲. 盐对DNA相变影响的非线性特性研究.  , 2003, 52(12): 3197-3202. doi: 10.7498/aps.52.3197
    [20] 吴世英, 张益, 雷晓玲, 胡钧, 艾小白, 李民乾. 用液流操纵单个DNA分子形成纳米悬链线图形.  , 2002, 51(8): 1887-1891. doi: 10.7498/aps.51.1887
计量
  • 文章访问数:  7335
  • PDF下载量:  359
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-23
  • 修回日期:  2017-04-19
  • 刊出日期:  2017-07-05

/

返回文章
返回
Baidu
map