搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

畸形波电磁散射特性分析及其特征识别标识的研究

吴庚坤 宋金宝 樊伟

引用本文:
Citation:

畸形波电磁散射特性分析及其特征识别标识的研究

吴庚坤, 宋金宝, 樊伟

Electromagnetic scattering characteristics analysis of freak waves and characteristics identification

Wu Geng-Kun, Song Jin-Bao, Fan Wei
PDF
导出引用
  • 针对弱非线性的Longuet-Higgins模型在模拟强非线性畸形波海面时所存在的问题,采用修正的相位调制法模拟一维畸形波时间、空间波面,该方法能够实现畸形波的定时定点生成,并且其波形既能保持目标谱的频谱结构,又能较大程度地满足波浪序列的统计特性.同时,基于改进的双尺度(TSM)法及时域有限差分法建立畸形波的电磁散射模型,经过相对平均偏差和均方根偏差误差分析后,基于TSM法研究分析了畸形波及其背景海面波的归一化雷达散射截面(NRCS)的计算结果.实验表明,合成孔径雷达成像中畸形波的NRCS比背景波要小,即畸形波的合成孔径雷达图像成像比背景波要灰暗,因此可以将NRCS作为畸形波的特征识别标识.通过分析研究不同极化方式、入射角、入射频率条件下畸形波与背景波面的电磁散射特性实验数据得出:当二者的NRCS差值大于-11.8 dB及以上时,即认为产生畸形波,这为实际的工程应用提供了参照标准.
    Based on the Longuet-Higgins wave model theory, a modified phase modulation method of simulating freak waves is improved in this paper. The method can generate freak waves at assigned time and place, and their waveforms can not only maintain the frequency spectrum structure of the target spectrum and also satisfy the wave series statistics to a great extent. Then, the electromagnetic backscattering model of freak and background wave is established by the finite difference time domain method and the two-scale method. After averaging relative deviation and analyzing the error of the root mean square deviation within the measurement uncertainties, considering the computational efficiency, we use the two-scale model method to calculate the electromagnetic scattering coefficient of freak wave. Numerical results show that the normalized radar cross section (NRCS) of freak wave is much smaller than that of background wave. On the other hand, we analyze the electromagnetic scattering properties of freak waves under the different polarization modes, incident angles and incident frequencies. We find that in the condition of grazing incidence, the backscatter coefficient of freak wave increases with the increase of the incident frequency, but the increase amplitude is reduced, which meets the rough surface scattering theory. When the incident frequency is fixed and the incident〉is small, the backscatter coefficient calculation results of freak wave are similar under the condition of different polarizations VV's and HH's, but the backscatter coefficient of freak wave decreases obviously with the increase of incident angle, which is caused by the radar electromagnetic wave that is parallel to the sea surface and contacts it gradually. In addition, we find that the backscatter coefficient calculation result of freak waves under the VV polarization is much higher than under HH polarization from the two groups of experimental figures. According to the result of datum analysis, a conclusion is drawn that we can determine where the freak wave is when the NRCS difference of synthetic aperture radar (SAR) image is smaller than -11.8 dB. In the practical engineering application, the characteristic parameters are difficult to observe, while the difference in electromagnetic scattering coefficient between freak wave and background wave can be calculated from the SAR image of sea surface. This conclusion provides a reference standard for predicting the freak waves in engineering application, through which we can calculate the characteristic parameters of freak wave, determine its position, and study the electromagnetic scattering characteristics under the different polarization modes, incident angles and incident frequencies in future researches.
      通信作者: 樊伟, fanwei@zju.edu.cn
    • 基金项目: 国家自然科学基金(批准号:41576013)、国家高技术研究发展计划(批准号:2013AA122803)和国家重点研发计划(批准号:2016YFC1401404)资助的课题.
      Corresponding author: Fan Wei, fanwei@zju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.41576013),the National High Technology Research and Development Program of China (Grant No.2013AA122803),and the National Key R&D Plan,China (Grant No.2016YFC1401404).
    [1]

    Kharif C, Pelinovsky E, Slunyaev A 2009 Rogue Waves in the Ocean (Berlin:Deblik)

    [2]

    Didenkulova I I, Slunyaev A V, Pelinovsky E N, et al. 2006 Natural Hazards and Earth System Sciences 6 1007

    [3]

    Kharif C, Pelinovsky E 2003 Europ. J. Mech. 22 603

    [4]

    Kim N, Kim C H 2003 Int. J. Offshore and Polar Engineering 13 38

    [5]

    Pei Y G, Zhang N C, Zhang Y Q 2007 Acta Oceanol. Sin. 29 172 (in Chinese)[裴玉国, 张宁川, 张运秋 2007 海洋学报 29 172]

    [6]

    Pei Y G, Zhang N C, Zhang Y Q 2007 China Ocean Engineer. 21 515

    [7]

    Huang G X 2002 Ph. D. Dissertation (Dalian:Dalian University of Technology) (in Chinese)[黄国兴 2002 博士学位论文 (大连:大连理工大学)]

    [8]

    Liu X X, Zhang N C, Pei Y G, Zhang Y Q 2007 Numerical Simulation of Freak Waves in Three-Dimensional Wave Field (Beijing:China Ocean Press) pp908-914 (in Chinese)[刘晓霞, 张宁川, 裴玉国, 张运秋 2007 中国环境资源与水利水电工程 (北京:海洋出版社) 第908–914页]

    [9]

    Zhao X Z, Sun Z C, Liang S X 2009 China Ocean Engineer. 23 429

    [10]

    Liu Z Q, Zhang N C, Yu Y X 2011 Acta Oceanol. Sin. 30 19

    [11]

    Zhang Y Q, Zhang N C 2007 Acta Oceanol. Sin. 26 116

    [12]

    Zhang Y Q, Zhang N C, Pei Y G 2007 China Ocean Engineer. 21 207

    [13]

    Onorato M, Osborne A R, Serio M 2004 Phys. Rev. E 70 67302

    [14]

    Longuet-Higgins M S 1952 J. Marine Res. 11 245

    [15]

    Wu G K, Ji G R, Ji T T, Ren H X 2014 Acta Phys. Sin. 63 134203 (in Chinese)[吴庚坤, 姬光荣, 姬婷婷, 任红霞 2014 63 134203]

    [16]

    Guo L X, Wang Y H, Wu Z S 2005 Acta Phys. Sin. 54 5130 (in Chinese)[郭立新, 王运华, 吴振森 2005 54 5130]

    [17]

    Yang J L, Guo L X, Wan J W 2007 Acta Phys. Sin. 56 2106 (in Chinese)[杨俊岭, 郭立新, 万建伟 2007 56 2106]

    [18]

    Ulaby F 1982 Microwave Remote Sensing (Vol. 2) (London:Addison-Wesbey Publishing)

    [19]

    Wang Y H, Guo L X, Wu Z S 2006 Acta Phys. Sin. 55 209 (in Chinese)[王运 华, 郭立新, 吴振森 2006 55 209]

    [20]

    Zhang Y D 2004 Ph. D. Dissertation (Xi'an:Xidian University) (in Chinese)[张 延冬 2004 博士学位论文 (西安:西安电子科技大学)]

    [21]

    Vladimir K, Daniele H 2003 J. Geophys. Res. 108 8054

    [22]

    Xie T, He C, William P, Kuang H L 2010 Chin. Phys. B 19 024101

    [23]

    Xu D L, Yu D Y 2001 Theory of Random Waves (Beijing:Higher Education Press) pp200-204 (in Chinese)[徐德伦, 于定勇 2001 随机海浪理论(北京:高 等教育出版社)第200–215页]

    [24]

    Ge D B, Yan Y B 2005 Finite-Difference Time-Domain Method for Electromagnetic Waves (Xi'an:Xidian University Press) (in Chinese)[葛德彪, 闫 玉波 2005 电磁波时域有限差分方法(西安:西安电子科技大学出版社)]

  • [1]

    Kharif C, Pelinovsky E, Slunyaev A 2009 Rogue Waves in the Ocean (Berlin:Deblik)

    [2]

    Didenkulova I I, Slunyaev A V, Pelinovsky E N, et al. 2006 Natural Hazards and Earth System Sciences 6 1007

    [3]

    Kharif C, Pelinovsky E 2003 Europ. J. Mech. 22 603

    [4]

    Kim N, Kim C H 2003 Int. J. Offshore and Polar Engineering 13 38

    [5]

    Pei Y G, Zhang N C, Zhang Y Q 2007 Acta Oceanol. Sin. 29 172 (in Chinese)[裴玉国, 张宁川, 张运秋 2007 海洋学报 29 172]

    [6]

    Pei Y G, Zhang N C, Zhang Y Q 2007 China Ocean Engineer. 21 515

    [7]

    Huang G X 2002 Ph. D. Dissertation (Dalian:Dalian University of Technology) (in Chinese)[黄国兴 2002 博士学位论文 (大连:大连理工大学)]

    [8]

    Liu X X, Zhang N C, Pei Y G, Zhang Y Q 2007 Numerical Simulation of Freak Waves in Three-Dimensional Wave Field (Beijing:China Ocean Press) pp908-914 (in Chinese)[刘晓霞, 张宁川, 裴玉国, 张运秋 2007 中国环境资源与水利水电工程 (北京:海洋出版社) 第908–914页]

    [9]

    Zhao X Z, Sun Z C, Liang S X 2009 China Ocean Engineer. 23 429

    [10]

    Liu Z Q, Zhang N C, Yu Y X 2011 Acta Oceanol. Sin. 30 19

    [11]

    Zhang Y Q, Zhang N C 2007 Acta Oceanol. Sin. 26 116

    [12]

    Zhang Y Q, Zhang N C, Pei Y G 2007 China Ocean Engineer. 21 207

    [13]

    Onorato M, Osborne A R, Serio M 2004 Phys. Rev. E 70 67302

    [14]

    Longuet-Higgins M S 1952 J. Marine Res. 11 245

    [15]

    Wu G K, Ji G R, Ji T T, Ren H X 2014 Acta Phys. Sin. 63 134203 (in Chinese)[吴庚坤, 姬光荣, 姬婷婷, 任红霞 2014 63 134203]

    [16]

    Guo L X, Wang Y H, Wu Z S 2005 Acta Phys. Sin. 54 5130 (in Chinese)[郭立新, 王运华, 吴振森 2005 54 5130]

    [17]

    Yang J L, Guo L X, Wan J W 2007 Acta Phys. Sin. 56 2106 (in Chinese)[杨俊岭, 郭立新, 万建伟 2007 56 2106]

    [18]

    Ulaby F 1982 Microwave Remote Sensing (Vol. 2) (London:Addison-Wesbey Publishing)

    [19]

    Wang Y H, Guo L X, Wu Z S 2006 Acta Phys. Sin. 55 209 (in Chinese)[王运 华, 郭立新, 吴振森 2006 55 209]

    [20]

    Zhang Y D 2004 Ph. D. Dissertation (Xi'an:Xidian University) (in Chinese)[张 延冬 2004 博士学位论文 (西安:西安电子科技大学)]

    [21]

    Vladimir K, Daniele H 2003 J. Geophys. Res. 108 8054

    [22]

    Xie T, He C, William P, Kuang H L 2010 Chin. Phys. B 19 024101

    [23]

    Xu D L, Yu D Y 2001 Theory of Random Waves (Beijing:Higher Education Press) pp200-204 (in Chinese)[徐德伦, 于定勇 2001 随机海浪理论(北京:高 等教育出版社)第200–215页]

    [24]

    Ge D B, Yan Y B 2005 Finite-Difference Time-Domain Method for Electromagnetic Waves (Xi'an:Xidian University Press) (in Chinese)[葛德彪, 闫 玉波 2005 电磁波时域有限差分方法(西安:西安电子科技大学出版社)]

  • [1] 魏嘉昕, 沙鹏飞, 方旭晨, 卢增雄, 李慧, 谭芳蕊, 吴晓斌. 基于相位调制的高相干光源照明匀化方法.  , 2024, 73(15): 154101. doi: 10.7498/aps.73.20240644
    [2] 范钰婷, 朱恩旭, 赵超樱, 谭维翰. 基于电光晶体平板部分相位调制动态产生涡旋光束.  , 2022, 71(20): 207801. doi: 10.7498/aps.71.20220835
    [3] 罗文, 陈天江, 张飞舟, 邹凯, 安建祝, 张建柱. 基于阶梯相位调制的窄谱激光主动照明均匀性.  , 2021, 70(15): 154207. doi: 10.7498/aps.70.20210228
    [4] 杜军, 杨娜, 李峻灵, 曲彦臣, 李世明, 丁云鸿, 李锐. 相位调制激光多普勒频移测量方法的改进.  , 2018, 67(6): 064204. doi: 10.7498/aps.67.20172049
    [5] 张熙程, 方龙杰, 庞霖. 强散射过程中基于奇异值分解的光学传输矩阵优化方法.  , 2018, 67(10): 104202. doi: 10.7498/aps.67.20172688
    [6] 袁强, 赵文轩, 马睿, 张琛, 赵伟, 王爽, 冯晓强, 王凯歌, 白晋涛. 基于偏振光相位调制的超衍射极限空间结构光研究.  , 2017, 66(11): 110201. doi: 10.7498/aps.66.110201
    [7] 刘雅坤, 王小林, 粟荣涛, 马鹏飞, 张汉伟, 周朴, 司磊. 相位调制信号对窄线宽光纤放大器线宽特性和受激布里渊散射阈值的影响.  , 2017, 66(23): 234203. doi: 10.7498/aps.66.234203
    [8] 范天奇, 郭立新, 金健, 孟肖. 含泡沫面元模型的海面电磁散射研究.  , 2014, 63(21): 214104. doi: 10.7498/aps.63.214104
    [9] 徐常伟, 朱峰, 刘丽娜, 牛大鹏. 群论在对称结构电磁散射问题中的应用.  , 2013, 62(16): 164102. doi: 10.7498/aps.62.164102
    [10] 杜军, 赵卫疆, 曲彦臣, 陈振雷, 耿利杰. 基于相位调制器与Fabry-Perot干涉仪的激光多普勒频移测量方法.  , 2013, 62(18): 184206. doi: 10.7498/aps.62.184206
    [11] 张宇, 张晓娟, 方广有. 大尺度分层介质粗糙面电磁散射的特性研究.  , 2012, 61(18): 184203. doi: 10.7498/aps.61.184203
    [12] 罗博文, 董建绩, 王晓, 黄德修, 张新亮. 基于相位调制和线性滤波的多信道多功能光学微分器.  , 2012, 61(9): 094213. doi: 10.7498/aps.61.094213
    [13] 马阎星, 王小林, 周朴, 马浩统, 赵海川, 许晓军, 司磊, 刘泽金, 赵伊君. 大气湍流对多抖动法相干合成技术中相位调制信号的影响.  , 2011, 60(9): 094211. doi: 10.7498/aps.60.094211
    [14] 张宇, 杨曦, 苟铭江, 史庆藩. 电磁散射问题的两种反演方法研究.  , 2010, 59(6): 3905-3911. doi: 10.7498/aps.59.3905
    [15] 朱常兴, 冯焱颖, 叶雄英, 周兆英, 周永佳, 薛洪波. 利用原子干涉仪的相位调制进行绝对转动测量.  , 2008, 57(2): 808-815. doi: 10.7498/aps.57.808
    [16] 蔡冬梅, 凌 宁, 姜文汉. 纯相位液晶空间光调制器拟合泽尼克像差性能分析.  , 2008, 57(2): 897-903. doi: 10.7498/aps.57.897
    [17] 杨利霞, 葛德彪, 王 刚, 阎 述. 磁化铁氧体材料电磁散射递推卷积-时域有限差分方法分析.  , 2007, 56(12): 6937-6944. doi: 10.7498/aps.56.6937
    [18] 王运华, 郭立新, 吴振森. 改进的二维分形模型在海面电磁散射中的应用.  , 2006, 55(10): 5191-5199. doi: 10.7498/aps.55.5191
    [19] 李运周, 史庆藩, 王 琪. 高频电磁波多次散射的数值求解.  , 2006, 55(3): 1119-1125. doi: 10.7498/aps.55.1119
    [20] 郭立新, 王运华, 吴振森. 双尺度动态分形粗糙海面的电磁散射及多普勒谱研究.  , 2005, 54(1): 96-101. doi: 10.7498/aps.54.96
计量
  • 文章访问数:  5969
  • PDF下载量:  183
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-30
  • 修回日期:  2017-04-25
  • 刊出日期:  2017-07-05

/

返回文章
返回
Baidu
map