搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大尺度有效引力的E(2)规范理论模型

魏文叶 申佳音 吴奕暐 杨礼想 薛迅 阮自强

引用本文:
Citation:

大尺度有效引力的E(2)规范理论模型

魏文叶, 申佳音, 吴奕暐, 杨礼想, 薛迅, 阮自强

E(2) gauge theory model of effective gravitational theory at large scale

Wei Wen-Ye, Shen Jia-Yin, Wu Yi-Wei, Yang Li-Xiang, Xue Xun, Yuan Tzu-Chiang
PDF
导出引用
  • 微波背景辐射的低l极矩的各向异性可能不能用微波背景辐射静止系boost到本动参考系来解释,我们推断boost对称性在宇宙学尺度上缺失,又由于单纯结合广义相对论和物质结构的标准模型不能解释星系以上尺度的引力现象,需要引入暗物质和暗能量.而迄今为止所有寻找暗物质粒子的实验给出的都是否定结果,暗能量的本质更是一个谜.因此,我们假设洛伦兹对称性是从星系以上尺度开始部分破缺,以非常狭义相对论对称群E(2)为例,用E(2)规范理论来构造大尺度有效引力理论,并分析了此规范理论的自洽性.从这些讨论中发现,当物质源即使为普通标量物质时,contortion也一般非零,非零contortion的存在会贡献一个等效能量动量张量的分布,它可能对暗物质效应给出至少部分的贡献.我们从对称性出发修改引力,有别于其他的修改引力理论.
    At the cosmological scale, there exist many anisotropic anomalies in the low-l multipoles of the CMB angular power spectrum. Especially, the normals to the octopole and quadrupole planes are aligned with the direction of the cosmological dipole at a level inconsistent with Gaussian random. The inconsistency indicates that the anomalies may not be boost effect from the CMB rest frame to the peculiar frame. It hints us that the boost invariance might be violated on a cosmological scale. There are some discrepancies between the astronomical and cosmological observations, and the predictions are solely based on general relativity and the standard model for elementary particle physics. The solutions are the introduction of dark matter and dark energy. However, all the experiments aiming at finding dark matter particles give negative result and it is still a mystery:what the dark energy is comprised of. We suppose that the Lorentz symmetry begins to be violated partly from the scale of galaxy and utilize the very special relativity symmetry group E(2) as an example to illustrate the Lorentz violation effect on the large-scale effective gravity. A local E(2) but Lorentz invariant gauge theory can be constructed based on the equivalence principle and the gauge principle. To realize the E(2) symmetry, the closure requirement of Maurer-Cartan eqnarray on E(2) algebra needs to be satisfied by postulating constraint conditions among the components of the Lorentz connection. The local Lorentz invariant gauge theory with a Hilbert-Einstein action is a theory with torsion in general case. However in the case of scalar matter source, the theory is exactly the theory of general relativity with Levi-Civita connection and zero torsion. In the E(2) gauge theory case, the closure requirement of Maurer-Cartan eqnarray for E(2) algebra postulates 12 constraint eqnarrays among the components of the Lorentz connection and the eqnarrays of motion for connection reduce the number of independent components of connection to 12. The eqnarrays of motion for the tetrad field do not contain only the involved tetrad field components nor these relevant independent components. So the whole number of variables needed to be solved is 12 more than that in general relativity while there are 12 more eqnarrays in the meantime. The torsion or the contortion field of the E(2) gauge theory is non-trivial even in the case of scalar matter source distribution. Decompose the connection into Levi-Civita one and the contortion part and rewrite the eqnarrays for tetrad field in the formalism of general relativity, then there will appear an effective energy-momentum tensor contributed by the contortion distribution, in addition to the ordinary matter source distribution even for the case of scalar matter source. We expect it to contribute at least part of the dark matter effect. We also examine the holding of the first and second Bianchi identities induced by Jacobi identity of the E(2) gauge theory. The approach of our modified gravity is different from other approach of modified gravity in the sense that we construct the modified gravity by modifying the spacetime symmetry on a large scale and the emergence of effective energy-momentum tensor caused by Lorentz violation effect is due to a purely large scale effect.
      通信作者: 薛迅, xxue@phy.ecnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11435005)资助的课题.
      Corresponding author: Xue Xun, xxue@phy.ecnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos.11435005).
    [1]

    Zwicky F 1937 Astrophys. J. 86 217

    [2]

    Rubin V C, Ford Jr W K, Thonnard N 1980 Astrophys. J. 238 471

    [3]

    Shojai F, Shojai A 2014 General Relat. Gravit. 46 1704

    [4]

    Moffat J W 2006 J. Cosmol. Astropart. Phys. 03 004

    [5]

    Bekenstein J D 2004 Phys. Rev. D 70 083509

    [6]

    Agnese R, Anderson A J, Asai M, et al. 2014 Phys. Rev. Lett. 112 241302

    [7]

    Kim S C, Bhang H, Choi J H, et al. 2012 Phys. Rev. Lett. 108 181301

    [8]

    Geringer-Sameth A, Koushiappas S M 2011 Phys. Rev. Lett. 107 241303

    [9]

    Ji X D 2017 Nature 542 172

    [10]

    Akerib D S, Akerlof C W, Akimov D Y, et al. 2017 Phys. Rev. Lett. 118 021303

    [11]

    Weinberg S 2008 Cosmology (New York:Oxford University Press) pp1-6

    [12]

    Aghanim N, Armitage-Caplan C, Arnaud M, et al. 2014 Astron. Astrophys. 571 A27

    [13]

    Ade P A R, Aghanim N, Armitage-Caplan C, et al. 2014 Astron. Astrophys. 571 A20

    [14]

    Ade P A R, Aghanim N, Akrami Y, et al. 2016 Astron. Astrophys. 594 A16

    [15]

    Coleman S R, Glashow S L 1999 Phys. Rev. D 59 116008

    [16]

    Colladay D, Kostelecky V A 1998 Phys. Rev. D 58 116002

    [17]

    Li X, Chang Z 2013 Chin. Phys. C 37 123103

    [18]

    Wu Y W, Xue X, Yang L X, Yuan T 2016 Chin. Sci. Bull. 10 1360

    [19]

    Wu Y W, Xue X, Yang L X, Yuan T 2015 arXiv: 151000814v3

    [20]

    Wu Y W, Xue X 2016 J. East China Normal Univ. 10 3969

    [21]

    Cohen A G, Glashow S L 2006 Phys. Rev. Lett. 97 021601

    [22]

    Micheletti S, Abdalla E, Wang B 2009 Phys. Rev. D 79 123506

    [23]

    He J H, Wang B 2011 Phys. Rev. D 83 063515

  • [1]

    Zwicky F 1937 Astrophys. J. 86 217

    [2]

    Rubin V C, Ford Jr W K, Thonnard N 1980 Astrophys. J. 238 471

    [3]

    Shojai F, Shojai A 2014 General Relat. Gravit. 46 1704

    [4]

    Moffat J W 2006 J. Cosmol. Astropart. Phys. 03 004

    [5]

    Bekenstein J D 2004 Phys. Rev. D 70 083509

    [6]

    Agnese R, Anderson A J, Asai M, et al. 2014 Phys. Rev. Lett. 112 241302

    [7]

    Kim S C, Bhang H, Choi J H, et al. 2012 Phys. Rev. Lett. 108 181301

    [8]

    Geringer-Sameth A, Koushiappas S M 2011 Phys. Rev. Lett. 107 241303

    [9]

    Ji X D 2017 Nature 542 172

    [10]

    Akerib D S, Akerlof C W, Akimov D Y, et al. 2017 Phys. Rev. Lett. 118 021303

    [11]

    Weinberg S 2008 Cosmology (New York:Oxford University Press) pp1-6

    [12]

    Aghanim N, Armitage-Caplan C, Arnaud M, et al. 2014 Astron. Astrophys. 571 A27

    [13]

    Ade P A R, Aghanim N, Armitage-Caplan C, et al. 2014 Astron. Astrophys. 571 A20

    [14]

    Ade P A R, Aghanim N, Akrami Y, et al. 2016 Astron. Astrophys. 594 A16

    [15]

    Coleman S R, Glashow S L 1999 Phys. Rev. D 59 116008

    [16]

    Colladay D, Kostelecky V A 1998 Phys. Rev. D 58 116002

    [17]

    Li X, Chang Z 2013 Chin. Phys. C 37 123103

    [18]

    Wu Y W, Xue X, Yang L X, Yuan T 2016 Chin. Sci. Bull. 10 1360

    [19]

    Wu Y W, Xue X, Yang L X, Yuan T 2015 arXiv: 151000814v3

    [20]

    Wu Y W, Xue X 2016 J. East China Normal Univ. 10 3969

    [21]

    Cohen A G, Glashow S L 2006 Phys. Rev. Lett. 97 021601

    [22]

    Micheletti S, Abdalla E, Wang B 2009 Phys. Rev. D 79 123506

    [23]

    He J H, Wang B 2011 Phys. Rev. D 83 063515

  • [1] 高建华, 盛欣力, 王群, 庄鹏飞. 费米子的相对论自旋输运理论.  , 2023, 72(11): 112501. doi: 10.7498/aps.72.20222470
    [2] 王恩权, 陈浩, 杨毅, 隆正文, HassanabadiHassan. 洛伦兹对称破缺框架下的广义克莱因-戈尔登谐振子.  , 2022, 71(6): 060301. doi: 10.7498/aps.71.20211733
    [3] 宋彤彤, 罗杰, 赖耘. 赝局域有效介质理论.  , 2020, 69(15): 154203. doi: 10.7498/aps.69.20200196
    [4] 蒲瑾, 杨树政, 林恺. 洛伦兹破缺理论与Vaidya黑洞弯曲时空中的Dirac粒子隧穿辐射特征.  , 2019, 68(19): 190401. doi: 10.7498/aps.68.20190437
    [5] 翟韩豫, 申佳音, 薛迅. 源自弦景观的有效Quintessence.  , 2019, 68(13): 139501. doi: 10.7498/aps.68.20190282
    [6] 董成伟. 非扩散洛伦兹系统的周期轨道.  , 2018, 67(24): 240501. doi: 10.7498/aps.67.20181581
    [7] 陈耀慧, 董祥瑞, 陈志华, 张辉, 栗保明, 范宝春. 翼型绕流的洛伦兹力控制机理.  , 2014, 63(3): 034701. doi: 10.7498/aps.63.034701
    [8] 徐岩, 樊炜, 冀彦君, 宋仁刚, 陈兵, 赵振华, 陈达. 非相对论弱相互作用玻色气体的有效场理论处理.  , 2014, 63(4): 040501. doi: 10.7498/aps.63.040501
    [9] 赵建利, 王京, 王慧. 洛伦兹-哈肯激光混沌系统有限时间稳定主动控制方法研究.  , 2012, 61(11): 110209. doi: 10.7498/aps.61.110209
    [10] 周先春, 林万涛, 林一骅, 姚静荪, 莫嘉琪. 一类扰动洛伦兹系统的解法.  , 2011, 60(11): 110207. doi: 10.7498/aps.60.110207
    [11] 余志强, 谢泉, 肖清泉. 狭义相对论下电子自旋轨道耦合对X射线光谱的影响.  , 2010, 59(2): 925-931. doi: 10.7498/aps.59.925
    [12] 周国泉. 洛伦兹光束的传输特性研究.  , 2008, 57(6): 3494-3498. doi: 10.7498/aps.57.3494
    [13] 郭汉英, 黄超光, 田 雨, 徐 湛, 周 彬. Beltrami-de Sitter时空和de Sitter不变的狭义相对论.  , 2005, 54(6): 2494-2504. doi: 10.7498/aps.54.2494
    [14] 王智河, 曹效文, 陈敬林, 李可斌. YBa2Cu3O7-δ外延薄膜的有效钉扎势.  , 1998, 47(10): 1720-1726. doi: 10.7498/aps.47.1720
    [15] 曾贵华, 余玮, 沈百飞, 徐至展. 高阶相对论谐波辐射的理论研究.  , 1996, 45(9): 1487-1491. doi: 10.7498/aps.45.1487
    [16] 钱青, 刘强, 徐向东, 田嘉禾, 陈学俊. 复杂原子的(e,2e)碰撞理论.  , 1992, 41(2): 233-237. doi: 10.7498/aps.41.233
    [17] 张耀中. 手征QCD2模型的有效拉氏量和质量生成.  , 1987, 36(11): 1513-1518. doi: 10.7498/aps.36.1513
    [18] 李钰, 西门纪业. 多级聚焦-偏转复合系统的相对论象差理论.  , 1982, 31(5): 604-614. doi: 10.7498/aps.31.604
    [19] 赵保恒. 自发破缺规范理论中的光子-光子散射.  , 1976, 25(1): 53-57. doi: 10.7498/aps.25.53
    [20] 束星北. 关於狭义相对论内之速度变换式.  , 1951, 8(3): 235-238. doi: 10.7498/aps.8.235
计量
  • 文章访问数:  6108
  • PDF下载量:  243
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-04
  • 修回日期:  2017-04-06
  • 刊出日期:  2017-07-05

/

返回文章
返回
Baidu
map