搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于偏振光相位调制的超衍射极限空间结构光研究

袁强 赵文轩 马睿 张琛 赵伟 王爽 冯晓强 王凯歌 白晋涛

引用本文:
Citation:

基于偏振光相位调制的超衍射极限空间结构光研究

袁强, 赵文轩, 马睿, 张琛, 赵伟, 王爽, 冯晓强, 王凯歌, 白晋涛

Sub-diffraction-limit spatially structured light pattern based on polarized beam phase modulation

Yuan Qiang, Zhao Wen-Xuan, Ma Rui, Zhang Chen, Zhao Wei, Wang Shuang, Feng Xiao-Qiang, Wang Kai-Ge, Bai Jin-Tao
PDF
导出引用
  • 具有超衍射极限尺寸的空间结构光在远场超分辨成像、光镊、微纳米加工等领域都有着重要的应用.本文基于偏振光的相位调制原理,结合光学实验与光场数值模拟开展了在空间生成具有超衍射极限尺寸的空间结构光的研究.首先设计了一种兼备圆形up与涡旋形2up相位板特点的新型相位板,并且实验观察到了高数值孔径系统中新型相位板调制圆偏振高斯光的焦点处的空间结构光形貌.随后通过结合矢量衍射积分理论的数值模拟,得出了一种具有超衍射极限尺寸、且同时呈现中心对称与轴对称的空间结构光.最后,本文详细讨论分析了新型相位板调制圆偏振光、线偏振光、径向偏振光以及角向偏振光所获得的空间结构光分布特点.结果显示,圆、线、径向与角向偏振条件下得到的空间结构光横向最小暗斑的半高全宽分别为0.31,0.32,0.24和0.36;在光轴上,线、径向与角向偏振光情况下的中心暗斑的半高全宽分别为0.8,0.78,0.76,而圆偏振光在轴向方向没有电矢量分布.
    The sub-diffraction-limit spatially structured light patterns have attracted more and more attention for their important applications in many frontier scientific fields. The present paper aims at developing sub-diffraction-limit spatially structured beam patterns which might have great potential to improve the light performance in fields such as super resolution imagery, optical tweezer, micro/nano lithography, etc. Here, a variety of spatially structured beam patterns are obtained by the phase modulation of polarized beams and studied in detail experimentally and numerically. Firstly, a new kind of phase plate, which combines the merits of circular and vortex 2 phase plates, is proposed based on the wave front design; it is composed of two spiral-shaped phase plates with their phases changing from 0 to 2 and - to , respectively. Later, the phase plate is applied to the circularly polarized Gaussian beam modulation in a high NA system. By combining a self-made circular with a commercial vortex 2 phase plate, the designed new phase plate is implemented in the experiment. The morphology of the spatially structured light pattern, which is generated on the focal plane, is observed by a CCD camera in the experiment. The beam pattern presents a donut shape on the focal plane, while the dimension of the donut-shaped pattern becomes smaller as the imaging plane axially deviates from the focal plane. It is found that the beam patterns captured in experiment highly consist with the numerical simulation results carried out by the vectorial diffraction integral theory. It can be deduced that the spatially structured beam is capillary-shaped. Meanwhile, at the two ends of the capillary-shaped beam, the inner diameter is smaller than the diffraction limitation. Furthermore, the structured beam pattern presents a spatial voxel distribution with center and axis symmetry. Finally, the characteristics of the spatially structured beam patterns, which are generated by modulating circular, linear, radial and azimuthal polarized beams with the new designed phase plate, are analyzed and discussed in detail. It is found that for circular, linear, radial and azimuthal polarization, the full widths at half maximum (FWHMs) of the minimum dark spots in the horizontal direction are 0.31, 0.32, 0.24 and 0.36, respectively. On the optical axis, the FWHMs of the dark spots created by linearly, radially and azimuthally polarized light, are 0.8, 0.78 and 0.76 , respectively, and no axial intensity is found with circularly polarized beam incidence.
      通信作者: 张琛, wangkg@nwu.edu.cn;nwuzchen@nwu.edu.cn ; 王凯歌, wangkg@nwu.edu.cn;nwuzchen@nwu.edu.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号:11504294)、国家自然科学基金面上项目(批准号:61378083)、 国家自然科学基金重大研究计划培育项目(批准号:91123030)、 科技部中美合作项目(批准号:2011DFA12220)、 陕西省自然科学基础研究计划青年人才项目(批准号:2016JQ1030)和陕西省自然科学基金(批准号:14JS106,2013SZS03-Z01)资助的课题.
      Corresponding author: Zhang Chen, wangkg@nwu.edu.cn;nwuzchen@nwu.edu.cn ; Wang Kai-Ge, wangkg@nwu.edu.cn;nwuzchen@nwu.edu.cn
    • Funds: Project supported by Young Scientist Fund of the National Natural Science Foundation of China (Grant No. 11504294), the National Natural Science Foundation of China (Grant No. 61378083), the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91123030), the International Cooperation Foundation of the National Science and Technology Ministry of China (Grant No. 2011DFA12220), the Youth Talent Plan of the Natural Science Foundation of Shaanxi Province of China (Grant No. 2016JQ1030), and the Natural Science Foundation of Shaanxi Province of China (Grant Nos. 14JS106, 2013SZS03-Z01).
    [1]

    Chattopadhyay S, Huangy Y F, Jen Y, Ganguly A, Chen K H, Chen L C 2010 Mat. Sci. Eng. R 69 1

    [2]

    Yang H F, He H D, Zhao E L, Han J, Hao J B, Qian J G, Tang W, Zhu H 2014 Laser Phys. 24 065901

    [3]

    Zhou Z H, Zhu L Q 2016 Chin. Phys. B 25 118

    [4]

    An S, Peng T, Zhou X, Han G X, Huang Z X, Yu X H, Cai Y N, Yao B L, Zhang P 2017 Acta Phys. Sin. 66 010702 (in Chinese) [安莎, 彭彤, 周兴, 韩国霞, 黄张翔, 于湘华, 蔡亚楠, 姚保利, 张鹏 2017 66 010702]

    [5]

    Westphal V, Kastrup L, Hell S W 2003 Appl. Phys. B 77 377

    [6]

    Westphal V, Hell S W 2005 Phys. Rev. Lett. 94 143903

    [7]

    Rittwegere E, Han K Y, Irvine S E, Eggeling C, Hell S W 2009 Nat. Photon. 3 144

    [8]

    Li S, Kuang C F, Ding Z H, Hao X, Gu Z T, Ge J H, Liu X 2013 Acta Laser Biology Sinica 22 103

    [9]

    Wildanger D, Patton B R, Schil H, Marseglia L, Hadden J P 2012 Adv. Mater. 24 309

    [10]

    Sakai K, Noda S 2007 Electron. Lett. 43 107

    [11]

    Yao B L, Yan S H, Ye T, Zhao W 2010 Chin. Phys. Lett. 27 224

    [12]

    Sun Y L, Zhao Y Q, Zhan Q W, Li Y P 2006 Acta Phys. Sin. 55 1253 (in Chinese) [孙艳丽, 赵逸琼, 詹其文, 李永平 2006 55 1253]

    [13]

    Cao Y, Gan Z, Jia B, Evans R A, Gu M 2011 Opt. Express 19 19486

    [14]

    Dong X Z, Chen W Q, Zhao Z S, Duan X M 2008 Chin. Sci. Bull. 53 2 (in Chinese) [董贤子, 陈卫强, 赵震声, 段宣明 2008 科学通报 53 2]

    [15]

    Dai N G, Xuan M D, Ding P, Jia H Q, Zhou J M, Chen H 2013 Acta Phys. Sin. 62 156104 (in Chinese) [戴隆贵, 禤铭冬, 丁芃, 贾海强, 周均铭, 陈宏 2013 62 156104]

    [16]

    Zhang C, Wang K G, Bai J T, Wang S, Zhao W, Yang F, Gu C Z, Wang G R 2013 Nanoscale Res. Lett. 8 1

    [17]

    Beijersbergen M W, Coerwinkel R P C, Kristensen M, Woerdman J P 1994 Opt. Commun. 112 321

    [18]

    Hotta J, Uji-I H, Hofkens J 2006 Opt. Express 14 6273

    [19]

    Bingen P, Reuss M, Engelhardt J, Hell S W 2011 Opt. Express 19 23716

    [20]

    Ren Y X, Li M, Huang K, Wu J G, Gao H F, Wang Z Q, Li Y M 2010 Appl. Opt. 49 1838

    [21]

    Qian J, Lei M, Dan D, Yao B L, Zhou X, Yang Y L, Yan S H, Min J W, Yu X H 2015 Sci. Rep. 5 14513

    [22]

    Hermerschmidt A, Krger S, Haist T, Zwick S, Warber M, Osten W 2008 Proceedings of SPIE San Jose, CA, January 19, 2008 p690508

    [23]

    Leonardo R D, Ianni F, Ruocco G 2007 Opt. Express 15 1913

  • [1]

    Chattopadhyay S, Huangy Y F, Jen Y, Ganguly A, Chen K H, Chen L C 2010 Mat. Sci. Eng. R 69 1

    [2]

    Yang H F, He H D, Zhao E L, Han J, Hao J B, Qian J G, Tang W, Zhu H 2014 Laser Phys. 24 065901

    [3]

    Zhou Z H, Zhu L Q 2016 Chin. Phys. B 25 118

    [4]

    An S, Peng T, Zhou X, Han G X, Huang Z X, Yu X H, Cai Y N, Yao B L, Zhang P 2017 Acta Phys. Sin. 66 010702 (in Chinese) [安莎, 彭彤, 周兴, 韩国霞, 黄张翔, 于湘华, 蔡亚楠, 姚保利, 张鹏 2017 66 010702]

    [5]

    Westphal V, Kastrup L, Hell S W 2003 Appl. Phys. B 77 377

    [6]

    Westphal V, Hell S W 2005 Phys. Rev. Lett. 94 143903

    [7]

    Rittwegere E, Han K Y, Irvine S E, Eggeling C, Hell S W 2009 Nat. Photon. 3 144

    [8]

    Li S, Kuang C F, Ding Z H, Hao X, Gu Z T, Ge J H, Liu X 2013 Acta Laser Biology Sinica 22 103

    [9]

    Wildanger D, Patton B R, Schil H, Marseglia L, Hadden J P 2012 Adv. Mater. 24 309

    [10]

    Sakai K, Noda S 2007 Electron. Lett. 43 107

    [11]

    Yao B L, Yan S H, Ye T, Zhao W 2010 Chin. Phys. Lett. 27 224

    [12]

    Sun Y L, Zhao Y Q, Zhan Q W, Li Y P 2006 Acta Phys. Sin. 55 1253 (in Chinese) [孙艳丽, 赵逸琼, 詹其文, 李永平 2006 55 1253]

    [13]

    Cao Y, Gan Z, Jia B, Evans R A, Gu M 2011 Opt. Express 19 19486

    [14]

    Dong X Z, Chen W Q, Zhao Z S, Duan X M 2008 Chin. Sci. Bull. 53 2 (in Chinese) [董贤子, 陈卫强, 赵震声, 段宣明 2008 科学通报 53 2]

    [15]

    Dai N G, Xuan M D, Ding P, Jia H Q, Zhou J M, Chen H 2013 Acta Phys. Sin. 62 156104 (in Chinese) [戴隆贵, 禤铭冬, 丁芃, 贾海强, 周均铭, 陈宏 2013 62 156104]

    [16]

    Zhang C, Wang K G, Bai J T, Wang S, Zhao W, Yang F, Gu C Z, Wang G R 2013 Nanoscale Res. Lett. 8 1

    [17]

    Beijersbergen M W, Coerwinkel R P C, Kristensen M, Woerdman J P 1994 Opt. Commun. 112 321

    [18]

    Hotta J, Uji-I H, Hofkens J 2006 Opt. Express 14 6273

    [19]

    Bingen P, Reuss M, Engelhardt J, Hell S W 2011 Opt. Express 19 23716

    [20]

    Ren Y X, Li M, Huang K, Wu J G, Gao H F, Wang Z Q, Li Y M 2010 Appl. Opt. 49 1838

    [21]

    Qian J, Lei M, Dan D, Yao B L, Zhou X, Yang Y L, Yan S H, Min J W, Yu X H 2015 Sci. Rep. 5 14513

    [22]

    Hermerschmidt A, Krger S, Haist T, Zwick S, Warber M, Osten W 2008 Proceedings of SPIE San Jose, CA, January 19, 2008 p690508

    [23]

    Leonardo R D, Ianni F, Ruocco G 2007 Opt. Express 15 1913

  • [1] 魏嘉昕, 沙鹏飞, 方旭晨, 卢增雄, 李慧, 谭芳蕊, 吴晓斌. 基于相位调制的高相干光源照明匀化方法.  , 2024, 73(15): 154101. doi: 10.7498/aps.73.20240644
    [2] 庞乃琦, 王垠, 葛勇, 施斌杰, 袁寿其, 孙宏祥. 基于多端口波导结构的宽频带声触发器.  , 2023, 72(16): 164301. doi: 10.7498/aps.72.20230594
    [3] 范钰婷, 朱恩旭, 赵超樱, 谭维翰. 基于电光晶体平板部分相位调制动态产生涡旋光束.  , 2022, 71(20): 207801. doi: 10.7498/aps.71.20220835
    [4] 罗文, 陈天江, 张飞舟, 邹凯, 安建祝, 张建柱. 基于阶梯相位调制的窄谱激光主动照明均匀性.  , 2021, 70(15): 154207. doi: 10.7498/aps.70.20210228
    [5] 肖鸿晶, 黄超, 唐玉龙, 徐剑秋. 基于时间透镜系统的冲击脉冲产生与特性研究.  , 2019, 68(15): 154201. doi: 10.7498/aps.68.20190246
    [6] 戴殊韬, 江涛, 吴丽霞, 吴鸿春, 林文雄. 单脉冲时间精确可控的单纵模Nd:YAG激光器.  , 2019, 68(13): 134202. doi: 10.7498/aps.68.20190393
    [7] 杜军, 杨娜, 李峻灵, 曲彦臣, 李世明, 丁云鸿, 李锐. 相位调制激光多普勒频移测量方法的改进.  , 2018, 67(6): 064204. doi: 10.7498/aps.67.20172049
    [8] 刘雅坤, 王小林, 粟荣涛, 马鹏飞, 张汉伟, 周朴, 司磊. 相位调制信号对窄线宽光纤放大器线宽特性和受激布里渊散射阈值的影响.  , 2017, 66(23): 234203. doi: 10.7498/aps.66.234203
    [9] 张心正, 夏峰, 许京军. 激光超衍射加工机理与研究进展.  , 2017, 66(14): 144207. doi: 10.7498/aps.66.144207
    [10] 张利明, 周寿桓, 赵鸿, 张昆, 郝金坪, 张大勇, 朱辰, 李尧, 王雄飞, 张浩彬. 780W全光纤窄线宽光纤激光器.  , 2014, 63(13): 134205. doi: 10.7498/aps.63.134205
    [11] 刘双龙, 刘伟, 陈丹妮, 牛憨笨. 超衍射极限相干反斯托克斯拉曼散射显微成像技术中空心光束的形成.  , 2014, 63(21): 214601. doi: 10.7498/aps.63.214601
    [12] 杜军, 赵卫疆, 曲彦臣, 陈振雷, 耿利杰. 基于相位调制器与Fabry-Perot干涉仪的激光多普勒频移测量方法.  , 2013, 62(18): 184206. doi: 10.7498/aps.62.184206
    [13] 齐晓庆, 高春清, 辛璟焘, 张戈. 基于激光光束轨道角动量的8位数据信号产生与检测的实验研究.  , 2012, 61(17): 174204. doi: 10.7498/aps.61.174204
    [14] 苏倩倩, 张国文, 蒲继雄. 高斯光束经表面有缺陷的厚非线性介质的传输特性.  , 2012, 61(14): 144208. doi: 10.7498/aps.61.144208
    [15] 罗博文, 董建绩, 王晓, 黄德修, 张新亮. 基于相位调制和线性滤波的多信道多功能光学微分器.  , 2012, 61(9): 094213. doi: 10.7498/aps.61.094213
    [16] 马阎星, 王小林, 周朴, 马浩统, 赵海川, 许晓军, 司磊, 刘泽金, 赵伊君. 大气湍流对多抖动法相干合成技术中相位调制信号的影响.  , 2011, 60(9): 094211. doi: 10.7498/aps.60.094211
    [17] 黄小东, 张小民, 王建军, 许党朋, 张锐, 林宏焕, 邓颖, 耿远超, 余晓秋. 色散对高能激光光纤前端FM-AM效应的影响.  , 2010, 59(3): 1857-1862. doi: 10.7498/aps.59.1857
    [18] 朱常兴, 冯焱颖, 叶雄英, 周兆英, 周永佳, 薛洪波. 利用原子干涉仪的相位调制进行绝对转动测量.  , 2008, 57(2): 808-815. doi: 10.7498/aps.57.808
    [19] 蔡冬梅, 凌 宁, 姜文汉. 纯相位液晶空间光调制器拟合泽尼克像差性能分析.  , 2008, 57(2): 897-903. doi: 10.7498/aps.57.897
    [20] 谢逸群, 郭 旗. 非局域克尔介质中空间光孤子的相互作用.  , 2004, 53(9): 3020-3024. doi: 10.7498/aps.53.3020
计量
  • 文章访问数:  6864
  • PDF下载量:  339
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-01
  • 修回日期:  2017-04-10
  • 刊出日期:  2017-06-05

/

返回文章
返回
Baidu
map