-
采用共沉淀法制备了粒径小于5 nm的六方相NaGdF4:3%Nd3+纳米颗粒.纳米颗粒表面缺陷会使发光中心产生严重的淬灭,对其表面包覆适当厚度的壳层可以有效地减少发光淬灭,提高发光性能.对NaGdF4:3%Nd3+核心纳米颗粒分别进行同质和异质包覆并且通过调节核壳比制备了不同壳层厚度的NaGdF4:3%Nd3+@NaGdF4和NaGdF4:3%Nd3+@NaYF4纳米颗粒,研究了不同的壳层厚度对核心纳米颗粒发光的影响,并对两种不同核壳结构纳米颗粒的发光性能进行了对比.在808 nm近红外光激发下,NaGdF4:3%Nd3+纳米颗粒发射出位于约866,893,1060 nm的近红外发射.与核心纳米颗粒相比,核壳结构的纳米颗粒的荧光强度增强,荧光寿命增长,并且随着壳厚的增加,荧光强度出现先增强后减弱、荧光寿命逐步增长的趋势.与相同条件下同质包覆的NaGdF4:3%Nd3+@NaGdF4纳米颗粒相比,异质包覆的NaGdF4:3%Nd3+@NaYF4纳米颗粒光谱荧光强度增强,寿命增长.
-
关键词:
- 近红外发光 /
- 同质核壳结构 /
- 异质核壳结构 /
- NaGdF4:Nd3+
In recent years, considerable researches have focused on the upconversion phosphor nanoparticles in the application of biomedical imaging, which emit visible light. Nevertheless, these kinds of nanoparticles limit the light penetration depth and imaging quality. The Nd3+ doped nanoparticles excited and emitted in a spectral range of 700-1100~nm can overcome those shortcomings. Furthermore, considering the applications of rare earth nanoparticles in biomedical imaging, smaller particle size is needed. However, the luminescence efficiencies of nano-structured materials are lower due to the inherent drawback of high sensitivity of Nd3+ ions to the surface defects. So, it is of vital importance for introducing a shell with low phonon energy to be overgrown on the surface of nanoparticles. According to the ratio of core material to the shell, core/shell structured nanoparticles are separated into homogeneous and homogeneousnanoparticles. And the shell material may influence the luminescence performance. In few reports there have been made the comparisons of luminescence performance of Nd3+ between heterogeneous and homogeneous core/shell nanoparticles. In the present work, small-sized hexagonal NaGdF4:3%Nd3+ nanoparticles with an average size of sub-5~nm are synthesized by a coprecipitation method. To overcome the nanosize-induced surface defects and improve the luminous performance, the NaGdF4:3%Nd3+ nanoparticles are coated with homogeneous and heterogeneous shells, respectively. Core/shell structured nanoparticles with different values of shell thickness are synthesized by using the core/shell ratios of 1:2, 1:4 and 1:6. The luminescence properties of the prepared nanoparticles are characterized by photoluminescence spectra and fluorescence lifetimes. Under 808~nm excitation, the NaGdF4:3%Nd3+ nanoparticles exhibit nearinfrared emissions with sharp bands at ~866 nm, ~893 nm, ~1060 nm, which can be assigned to the transitions of 4F3/2 to 4I9/2, 4F2/3 to 4I11/2, respectively. The locations of emission peaks of the core/shell nanoparticles are in accordance with the those of cores while the fluorescence intensity increases significantly. In addition, the average lifetimes of Nd3+ ions at 866 nm of core/shell nanoparticles are longer than those of the cores, which indicates that the undoped shell can minimize the occurrence of unwanted surfac-related deactivations. Notably, comparing with the homogeneous NaGdF4:3%Nd3+@NaGdF4 nanoparticles, the fluorescence intensity of heterogeneous NaGdF4:3%Nd3+@NaYF4 nanoparticles is enhanced and their lifetimes become longer. It is due to the low stability of hexagonal NaYF4, which suppresses the nucleation of the shell precursor and makes the shell able to be fully coated on the core. The decrease of electron charge density on the surface of core/shell nanoparticles is also beneficial to shell growth and crystallization. The high crystallinity of heterogeneous core/shell structured nanoparticles can eliminate negative influence of surface effect more efficiently. In addition, the phonon energy of NaYF4 is lower than that of NaGdF4, which leads to low possibility of non-radiative cross-relaxation between Nd3+ ions, thereby improving the luminescence efficiency in the near in frared emission.-
Keywords:
- near-infrared luminescence /
- homogeneous core/shell structure /
- heterogeneous core/shell structure /
- NaGdF4:Nd3+
[1] Weissleder R 2001 Nat. Biotechnol. 19 316
[2] Wang F, Banerjee D, Liu Y S, Chen X Y, Liu X G 2010 Analyst 135 1839
[3] Wang X, Xiao S, Bu Y, Ding J W 2009 J. Alloy. Compd. 477 941
[4] Zhan Q Q, Qian J, Liang H J, Somesfalean G, Wang D, He S L, Zhang Z G, Andersson-Engels S 2011 ACS Nano 5 3744
[5] Gao W, Dong J, Wang R B, Wang C J, Zheng H R 2016 Acta Phys. Sin. 65 084205 (in Chinese) [高伟, 董军, 王瑞博, 王朝晋, 郑海荣 2016 65 084205]
[6] Ntziachristos V, Ripoll J, Wang L H V, Weissleder R 2005 Nat. Biotech. 23 313
[7] Chen G Y, Ohulchanskyy T Y, Liu S, Law W C, Wu F, Swihart M T, Agren H, Prasad P N 2012 ACS Nano 6 2969
[8] Smith A M, Mancini M C, Nie S M 2009 Nat. Nanotechnol. 4 710
[9] Tallury P, Kar S, Snatra S, Bamrungsap S, Huang Y F, Tan W 2009 Chem. Commun. 7 2347
[10] Zhou C, Long M, Qin Y, Sun X, Zheng J 2011 Angew. Chem. Int. Ed. Engl. 50 3172
[11] Xie D N, Peng H S, Huang S H, You F T, Wang X H 2016 Acta Phys. Sin. 63 147801 (in Chinese) [谢蒂旎, 彭洪尚, 黄世华, 由芳田, 王小卉 2016 63 147801]
[12] Vetrone F, Naccache R, Mahalingam V, Morgan C G, Capobianco J A 2009 Adv. Funct. Mater. 19 2924
[13] Yu F D, Chen H, Zhao D, Qin G S, Qin W P 2014 Chin. J. Lumin. 35 166 (in Chinese) [于放达, 陈欢, 赵丹, 秦冠仕, 秦伟平 2014 发光学报 35 166]
[14] Li X K, You F T, Peng H S, Huang S H 2016 J. Nanosci. Nanotechnol. 16 3940
[15] Xie D N, Peng H S, Huang S H, You F T 2013 J. Nanomater. 2013 891515
[16] Naduviledathu Raj A, Rinel T, Haase M 2014 Chem. Mater. 26 5689
[17] Wang J, Song H, Xu W, Dong B, Xu S, Chen B, Yu W, Zhang S 2013 Nanoscal. 5 3412
[18] Mai H X, Zhang Y W, Si R, Yan Z G, Sun L D, You L P, Yan C H 2006 J. Am. Chem. Soc. 128 6426
[19] Wang F, Han Y, Lim C S, Lu Y, Wang J, Xu J, Chen H, Zhang C, Hong M, Liu X 2010 Nature 463 1061
[20] Lei L, Chen D, Huang P, Xu J, Zhang R, Wang Y 2013 Nanoscale 5 11305
[21] Huang K, Jayakumar M K G, Zhang Y 2015 J. Mater. Chem. C 3 10267
[22] Hu P, Wu X F, Hu S G, Chen Z H, Yan H Y, Xi Z F, Yu Y, Dai G T, Liu Y X 2016 Photochem. Photobiol. Sci. 15 260
[23] Bednarkiewicz A, Wawrzynczyk D, Nyk M, Strek W 2011 App. Phys. B 103 84
-
[1] Weissleder R 2001 Nat. Biotechnol. 19 316
[2] Wang F, Banerjee D, Liu Y S, Chen X Y, Liu X G 2010 Analyst 135 1839
[3] Wang X, Xiao S, Bu Y, Ding J W 2009 J. Alloy. Compd. 477 941
[4] Zhan Q Q, Qian J, Liang H J, Somesfalean G, Wang D, He S L, Zhang Z G, Andersson-Engels S 2011 ACS Nano 5 3744
[5] Gao W, Dong J, Wang R B, Wang C J, Zheng H R 2016 Acta Phys. Sin. 65 084205 (in Chinese) [高伟, 董军, 王瑞博, 王朝晋, 郑海荣 2016 65 084205]
[6] Ntziachristos V, Ripoll J, Wang L H V, Weissleder R 2005 Nat. Biotech. 23 313
[7] Chen G Y, Ohulchanskyy T Y, Liu S, Law W C, Wu F, Swihart M T, Agren H, Prasad P N 2012 ACS Nano 6 2969
[8] Smith A M, Mancini M C, Nie S M 2009 Nat. Nanotechnol. 4 710
[9] Tallury P, Kar S, Snatra S, Bamrungsap S, Huang Y F, Tan W 2009 Chem. Commun. 7 2347
[10] Zhou C, Long M, Qin Y, Sun X, Zheng J 2011 Angew. Chem. Int. Ed. Engl. 50 3172
[11] Xie D N, Peng H S, Huang S H, You F T, Wang X H 2016 Acta Phys. Sin. 63 147801 (in Chinese) [谢蒂旎, 彭洪尚, 黄世华, 由芳田, 王小卉 2016 63 147801]
[12] Vetrone F, Naccache R, Mahalingam V, Morgan C G, Capobianco J A 2009 Adv. Funct. Mater. 19 2924
[13] Yu F D, Chen H, Zhao D, Qin G S, Qin W P 2014 Chin. J. Lumin. 35 166 (in Chinese) [于放达, 陈欢, 赵丹, 秦冠仕, 秦伟平 2014 发光学报 35 166]
[14] Li X K, You F T, Peng H S, Huang S H 2016 J. Nanosci. Nanotechnol. 16 3940
[15] Xie D N, Peng H S, Huang S H, You F T 2013 J. Nanomater. 2013 891515
[16] Naduviledathu Raj A, Rinel T, Haase M 2014 Chem. Mater. 26 5689
[17] Wang J, Song H, Xu W, Dong B, Xu S, Chen B, Yu W, Zhang S 2013 Nanoscal. 5 3412
[18] Mai H X, Zhang Y W, Si R, Yan Z G, Sun L D, You L P, Yan C H 2006 J. Am. Chem. Soc. 128 6426
[19] Wang F, Han Y, Lim C S, Lu Y, Wang J, Xu J, Chen H, Zhang C, Hong M, Liu X 2010 Nature 463 1061
[20] Lei L, Chen D, Huang P, Xu J, Zhang R, Wang Y 2013 Nanoscale 5 11305
[21] Huang K, Jayakumar M K G, Zhang Y 2015 J. Mater. Chem. C 3 10267
[22] Hu P, Wu X F, Hu S G, Chen Z H, Yan H Y, Xi Z F, Yu Y, Dai G T, Liu Y X 2016 Photochem. Photobiol. Sci. 15 260
[23] Bednarkiewicz A, Wawrzynczyk D, Nyk M, Strek W 2011 App. Phys. B 103 84
计量
- 文章访问数: 7219
- PDF下载量: 231
- 被引次数: 0