搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于可调谐半导体激光器吸收光谱的高灵敏度甲烷浓度遥测技术

丁武文 孙利群 衣路英

引用本文:
Citation:

基于可调谐半导体激光器吸收光谱的高灵敏度甲烷浓度遥测技术

丁武文, 孙利群, 衣路英

High sensitive scheme for methane remote sensor based on tunable diode laser absorption spectroscopy

Ding Wu-Wen, Sun Li-Qun, Yi Lu-Ying
PDF
导出引用
  • 讨论了一种新的高灵敏度甲烷遥测方法,利用可调谐激光二极管的调制光谱技术扫描甲烷的吸收峰,通过在测量光路中插入参考气池,增强低浓度情况下的吸收峰辨识能力,以提高甲烷浓度遥测信号的信噪比.此外,可以将激光器的中心波长锁定至气体吸收峰的峰值位置从而使仪器工作于吸收峰锁定模式,进行甲烷浓度的连续监测.实验结果表明,在测量距离分别为10 m和20 m时,周围环境中的甲烷积分浓度探测极限可以分别达到5 ppmm和16 ppmm.在吸收峰锁定工作模式下,系统在37 m距离处具有22 ppmm的检出限,并可以监测甲烷浓度的快速变化.
    Methane is an important raw material for various petrochemicals in industrial fields and as also a clean fuel in daily life. However, as an inflammable and explosive material, methane leak can lead to disastrous consequences such as fire and explosion. Furthermore, as a kind of greenhouse gas, methane has stronger influence on global warming than carbon dioxide. In this paper, we present a new high sensitive scheme for methane remote sensing, which can facilitate detection and location of methane leakage. And the 2v3 band (near 1653.7 nm) of methane is chosen as the target transition which is free from the absorption of the other molecule in atmosphere. A tunable distributed-feedback diode laser is adapted to scan across the target transition. A Fresnel lens with a diameter of 150 mm is employed to collect the ambient backscattering light from natural features such as the buildings. The first harmonic signal is used to normalize the second harmonic signal to remove the influence introduced by the unknown reflectance factor of the actual target, therefore no retro-reflector is needed. Traditional tunable diode laser absorption spectroscopy (TDLAS) method has difficulty in locating the second harmonic signal peak position in low concentration conditions because of low signal-noise-ratio (SNR). To improve the SNR especially in low concentration environment, a scheme named baseline-offset TDLAS is presented in the paper, in which a reference cell filled with standard methane sample is inserted into the measuring optical path. The reference cell can also be used to calibrate the sensor. Furthermore, the reference cell can be used to lock the central frequency of the diode laser to the absorption peak position to monitor concentration fluctuation continuously. In the peak-locking mode, the sensor demodulates the third harmonic signal as error signal to control the injection current of the laser source with PID control. Moreover, one advantage of peak-locking mode is that the measurement frequency is about two orders of magnitude higher than the traditional TDLAS method. With baseline-offset TDLAS, the remote sensor described in this paper obtains SNRs as high as 19 and 16 at a stand-off distance of 10 m and 20 m, respectively. With such a high SNR, there is no necessity for complex algorithm in absorption peak position location. By defining the standard deviation of the measuring concentration as the detection limit, experimental results show that the proposed methane remote sensor has detection limits of 5 ppm m at a distance of 10 m and 16 ppmm for 20 m, respectively, while measuring the ambient methane. In peak-locked mode, the experimental system has a detection limit of 22 ppmm at a distance up to 37 m and can monitor rapid concentration fluctuation in.
      通信作者: 孙利群, sunlq@mail.tsinghua.edu.cn
    • 基金项目: 国家重大科学仪器设备开发专项(批准号:2012YQ200182,2012YQ0901670602)资助的课题.
      Corresponding author: Sun Li-Qun, sunlq@mail.tsinghua.edu.cn
    • Funds: Project supported by the National Major Scientific Instrument and Equipment Development Project of China (Grant Nos. 2012YQ200182, 2012YQ0901670602).
    [1]

    Fukada S, Nakamura N, Monden J 2004 Int. J. Hydrogen Energ. 29 619

    [2]

    Fincke J R, Anderson R P, Hyde T, Detering B A, Wright R, Bewley R L, Haggard D C, Swank W D 2002 Plasma Chem. Plasma P. 22 105

    [3]

    Mer J L, Roger P 2001 Eur. J. Soil. Biol. 37 25

    [4]

    Iseki T, Tai H, Kimura K 2000 Meas. Sci. Technol. 11 594

    [5]

    Zhang S, Liu W Q, Zhang Y J, Ruan J, Kan R F, You K, Yu D Q, Dong J T, Han X L 2012 Acta Phys. Sin. 61 050701 (in Chinese) [张帅, 刘文清, 张玉钧, 阮俊, 阚瑞峰, 尤坤, 于殿强, 董金婷, 韩小磊 2012 61 050701]

    [6]

    Wainner R, Green B, Allen M G, White M, Stafford-Evans J, Naper R 2002 Appl. Phys. B 75 249

    [7]

    Goldenstein C S, Mitchell Spearrin R, Hanson R K 2016 Appl. Opt. 55 479

    [8]

    Kan R F, Liu W Q, Zhang Y J, Liu J G, Dong F Z, Gao S H, Wang M, Chen J 2005 Acta Phys. Sin. 54 1927 (in Chinese) [阚瑞峰, 刘文清, 张玉钧, 刘建国, 董凤忠, 高山虎, 王敏, 陈军 2005 54 1927]

    [9]

    Xia H H, Kan R F, Liu J G, Xu Z Y, He Y B 2016 Chin. Phys. B 25 064205

    [10]

    Rieker G B, Jeffries J B, Hanson R K, Mathur T, Gruber M R, Carter C D 2009 Proc. Combst. Inst. 32 831

    [11]

    Huang Q B, Xu X M, Li C J, Ding Y P, Cao C, Yin L Z, Ding J F 2016 Chin. Phys. B 25 114202

    [12]

    Chakraborty A L, Ruxton K, Johnstone W, Lengden M, Duffin K 2009 Opt. Express 17 9602

    [13]

    Nadezhdinskii A, Berezin A, Chernin S, Ershov O, Kutnyak V 1999 Spectrochim. Acta A 55 2083

    [14]

    Reid J, Labrie D 1981 Appl. Phys. B 26 203

    [15]

    Duffin K, McGettrick A J, Johnstone W, Stewart G, Moodie D G 2007 J. Lightwave Technol. 25 3114

    [16]

    Fernholz T, Teichert H, Ebert V 2002 Appl. Phys. B 75 229

    [17]

    Cao Y N, Wang G S, Tan T, Wang L, Mei J X, Cai T D, Gao X M 2016 Acta Phys. Sin. 65 084202 (in Chinese) [曹亚南, 王贵师, 谈图, 汪磊, 梅教旭, 蔡廷栋, 高晓明 2016 65 084202]

    [18]

    Kluczynski P, Axner O 1999 Appl. Opt. 38 5803

    [19]

    Rothman L S, Gordon I E, Babikov Y 2013 J. Quant. Spectrosc. Ra. 130 4

    [20]

    Werle P W, Mazzinghi P, D'Amato F, Rosa M D, Maurer K, Slemr F 2004 Spectrochim. Acta A 60 1685

  • [1]

    Fukada S, Nakamura N, Monden J 2004 Int. J. Hydrogen Energ. 29 619

    [2]

    Fincke J R, Anderson R P, Hyde T, Detering B A, Wright R, Bewley R L, Haggard D C, Swank W D 2002 Plasma Chem. Plasma P. 22 105

    [3]

    Mer J L, Roger P 2001 Eur. J. Soil. Biol. 37 25

    [4]

    Iseki T, Tai H, Kimura K 2000 Meas. Sci. Technol. 11 594

    [5]

    Zhang S, Liu W Q, Zhang Y J, Ruan J, Kan R F, You K, Yu D Q, Dong J T, Han X L 2012 Acta Phys. Sin. 61 050701 (in Chinese) [张帅, 刘文清, 张玉钧, 阮俊, 阚瑞峰, 尤坤, 于殿强, 董金婷, 韩小磊 2012 61 050701]

    [6]

    Wainner R, Green B, Allen M G, White M, Stafford-Evans J, Naper R 2002 Appl. Phys. B 75 249

    [7]

    Goldenstein C S, Mitchell Spearrin R, Hanson R K 2016 Appl. Opt. 55 479

    [8]

    Kan R F, Liu W Q, Zhang Y J, Liu J G, Dong F Z, Gao S H, Wang M, Chen J 2005 Acta Phys. Sin. 54 1927 (in Chinese) [阚瑞峰, 刘文清, 张玉钧, 刘建国, 董凤忠, 高山虎, 王敏, 陈军 2005 54 1927]

    [9]

    Xia H H, Kan R F, Liu J G, Xu Z Y, He Y B 2016 Chin. Phys. B 25 064205

    [10]

    Rieker G B, Jeffries J B, Hanson R K, Mathur T, Gruber M R, Carter C D 2009 Proc. Combst. Inst. 32 831

    [11]

    Huang Q B, Xu X M, Li C J, Ding Y P, Cao C, Yin L Z, Ding J F 2016 Chin. Phys. B 25 114202

    [12]

    Chakraborty A L, Ruxton K, Johnstone W, Lengden M, Duffin K 2009 Opt. Express 17 9602

    [13]

    Nadezhdinskii A, Berezin A, Chernin S, Ershov O, Kutnyak V 1999 Spectrochim. Acta A 55 2083

    [14]

    Reid J, Labrie D 1981 Appl. Phys. B 26 203

    [15]

    Duffin K, McGettrick A J, Johnstone W, Stewart G, Moodie D G 2007 J. Lightwave Technol. 25 3114

    [16]

    Fernholz T, Teichert H, Ebert V 2002 Appl. Phys. B 75 229

    [17]

    Cao Y N, Wang G S, Tan T, Wang L, Mei J X, Cai T D, Gao X M 2016 Acta Phys. Sin. 65 084202 (in Chinese) [曹亚南, 王贵师, 谈图, 汪磊, 梅教旭, 蔡廷栋, 高晓明 2016 65 084202]

    [18]

    Kluczynski P, Axner O 1999 Appl. Opt. 38 5803

    [19]

    Rothman L S, Gordon I E, Babikov Y 2013 J. Quant. Spectrosc. Ra. 130 4

    [20]

    Werle P W, Mazzinghi P, D'Amato F, Rosa M D, Maurer K, Slemr F 2004 Spectrochim. Acta A 60 1685

  • [1] 李绍民, 孙利群. 基于改进波长调制光谱技术的高吸收度甲烷气体测量.  , 2023, 72(1): 010701. doi: 10.7498/aps.72.20221725
    [2] 赵荣, 周宾, 刘奇, 戴明露, 汪步斌, 王一红. 基于激光吸收光谱技术的在线层析成像算法.  , 2023, 72(5): 054206. doi: 10.7498/aps.72.20221935
    [3] 王媛媛, 王羡之, 宋贾俊, 张旭, 王兆华, 魏志义. 超强激光在均匀等离子体中的背向拉曼散射放大机制.  , 2022, 71(5): 055202. doi: 10.7498/aps.71.20211270
    [4] 李绍民, 孙利群. 基于改进波长调制光谱技术的高吸收度甲烷气体测量.  , 2022, 0(0): 0-0. doi: 10.7498/aps.71.20221725
    [5] 王志鹏, 关宝璐, 张峰, 杨嘉炜. 内腔亚波长光栅液晶可调谐垂直腔面发射激光器.  , 2021, 70(22): 224208. doi: 10.7498/aps.70.20210957
    [6] 王琛, 安红海, 熊俊, 方智恒, 季雨, 练昌旺, 谢志勇, 郭尔夫, 贺芝宇, 曹兆栋, 王伟, 闫锐, 裴文兵. 皮秒激光驱动下的背向受激布里渊散射的光谱结构.  , 2021, 70(19): 195202. doi: 10.7498/aps.70.20210568
    [7] 陶蒙蒙, 陶波, 叶景峰, 沈炎龙, 黄珂, 叶锡生, 赵军. 可调谐掺铥光纤激光器线宽压缩及其超光谱吸收应用.  , 2020, 69(3): 034205. doi: 10.7498/aps.69.20191515
    [8] 刘宾, 赵鹏翔, 赵霞, 罗悦, 张立超. 融合偏振信息的多孔径水下成像算法.  , 2020, 69(18): 184202. doi: 10.7498/aps.69.20200471
    [9] 丁武文, 孙利群. 相敏式激光啁啾色散光谱技术在高吸收度情况下的应用.  , 2017, 66(12): 120601. doi: 10.7498/aps.66.120601
    [10] 耿辉, 刘建国, 张玉钧, 阚瑞峰, 许振宇, 姚路, 阮俊. 基于可调谐半导体激光吸收光谱的酒精蒸汽检测方法.  , 2014, 63(4): 043301. doi: 10.7498/aps.63.043301
    [11] 谭巍, 付小芳, 李志新, 赵刚, 闫晓娟, 马维光, 董磊, 张雷, 尹王保, 贾锁堂. 基于单波长外腔共振和频技术产生波长可调谐589 nm激光及钠原子饱和荧光谱的测量.  , 2013, 62(9): 094211. doi: 10.7498/aps.62.094211
    [12] 程巳阳, 徐亮, 高闽光, 金岭, 李胜, 冯书香, 刘建国, 刘文清. 直射太阳光红外吸收光谱技术遥测大气中二氧化碳柱浓度.  , 2013, 62(12): 124206. doi: 10.7498/aps.62.124206
    [13] 张帅, 刘文清, 张玉钧, 阮俊, 阚瑞峰, 尤坤, 于殿强, 董金婷, 韩小磊. 基于激光吸收光谱技术天然气管道泄漏定量遥测方法的研究.  , 2012, 61(5): 050701. doi: 10.7498/aps.61.050701
    [14] 王晓波, 马维光, 王晶晶, 肖连团, 贾锁堂. 单光子波长调制吸收光谱用于1.5 m激光器的波长锁定.  , 2012, 61(10): 104205. doi: 10.7498/aps.61.104205
    [15] 孟祥富, 王琛, 安红海, 贾果, 方智恒, 周华珍, 孙今人, 王伟, 傅思祖. 驱动激光束间相干性以及对背向散射影响的研究.  , 2012, 61(18): 185202. doi: 10.7498/aps.61.185202
    [16] 刘艳, 汪磊石, 陶沛琳, 冯素春, 尹国路, 任文华, 谭中伟, 简水生. 波长可调谐取样光纤光栅激光器的输出特性研究.  , 2011, 60(2): 024207. doi: 10.7498/aps.60.024207
    [17] 谢仕永, 鲁远甫, 薄勇, 崔前进, 徐一汀, 许家林, 彭钦军, 崔大复, 许祖彦. 高功率可调谐1064 nm准连续单频激光振荡-放大系统研究.  , 2009, 58(7): 4659-4663. doi: 10.7498/aps.58.4659
    [18] 袁剑辉, 杨昌虎, 张振华, 袁晓博. Cr3+掺杂的Cd3Al2Ge3O12光谱特性及晶场参数计算.  , 2008, 57(8): 5272-5276. doi: 10.7498/aps.57.5272
    [19] 郭永娟, 孙军强, 王 健, 李 婧. 基于光纤环形腔激光器的可调谐全光波长转换器的研究.  , 2007, 56(8): 4602-4607. doi: 10.7498/aps.56.4602
    [20] 李培丽, 张新亮, 陈 俊, 黄黎蓉, 黄德修. 基于环行腔激光器四波混频型可调谐波长转换的理论研究.  , 2005, 54(3): 1222-1228. doi: 10.7498/aps.54.1222
计量
  • 文章访问数:  7785
  • PDF下载量:  432
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-06
  • 修回日期:  2017-02-16
  • 刊出日期:  2017-05-05

/

返回文章
返回
Baidu
map