搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

缺陷致非线性电路孤子非对称传输

刘昊华 王少华 李波波 李桦林

引用本文:
Citation:

缺陷致非线性电路孤子非对称传输

刘昊华, 王少华, 李波波, 李桦林

Defect induced asymmetric soliton transmission in the nonlinear circuit

Liu Hao-Hua, Wang Shao-Hua, Li Bo-Bo, Li Hua-Lin
PDF
导出引用
  • 设计了一种有缺陷的非线性电感-电容(LC)电路,简单方便地实现了电路能量非对称传输,且其能量的载体是非线性波孤子.在LC电路中,当缺陷靠近驱动时,驱动频率接近缺陷本振频率,缺陷共振致电路导通.远离驱动时,电路不导通.缺陷的引入改变电路的均一性,实现小驱动振幅下孤子的单向释放,提高驱动能量转化为孤子能量的效率.对非线性LC电路的传输能量、缺陷系数和驱动振幅三者的关系进行了讨论.
    Electrical diode, the first device to rectify the current flux, has significantly revolutionized fundamental science and advanced technology in various aspects of our routine life. Motivated by the one-way rectification effect, considerable effort has been dedicated to the study of the unidirectional transmission in other physical systems for the potential applications, such as the acoustic diode, thermal diode, etc. The nonlinear LC circuit, which has unique advantages in the measurement of energy with which the voltage and current can be achieved by digital oscilloscope conveniently, provides a simple and effective way of studying the nonlinear wave propagation in a dispersive medium. In this paper, we design a defective LC nonlinear circuit deliberately to realize asymmetric transmission of energy, and the energy carrier is nonlinear wave which is so-called soliton, instead of the linear wave in the pass band. The defect-induced localized wave is a kind of intrinsic bound-state wave mode that is evanescent away from the defect site but vibrates around the site with an intrinsic frequency fr. In the LC circuit, when the defect is close to the driver, with the frequency of driven signal in the forbidden band of system approaching to the intrinsic resonance frequency fr of the defect, the resonance induced by the defect enables the circuit to turn on, which is relevant to but somewhat different from what was uncovered by Leon et al. about the intrinsic instability of evanescent waves stirred up directly by a boundary drive. On the other hand, the system acts like an insulator, for the defect is far away from the drive. The defect changes the homogeneity of the line, which allows the soliton to be released in one direction by the local resonance, with the driver being at a lower amplitude. As a result, the introducing of defects significantly improves conversion efficiency from the driver energy into the soliton. To further understand this phenomenon in the defective LC nonlinear circuit, we numerically investigate the relationship among transmission energy, defect coefficient and driver amplitude. Finally, the combined defects are also considered to further adjust the LC nonlinear circuit.
      通信作者: 王少华, shitoucheng_w@sina.com
    • 基金项目: 国家自然科学基金(批准号:11174140,11574149)资助的课题.
      Corresponding author: Wang Shao-Hua, shitoucheng_w@sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174140, 11574149).
    [1]

    Li X F, Ni X, Feng L, Lu M H, He C, Chen Y F 2011 Phys. Rev. Lett. 106 084301

    [2]

    Liang B, Yuan B, Cheng J C 2009 Phys. Rev. Lett. 103 104301

    [3]

    Li B, Wang L, Casati G 2004 Phys. Rev. Lett. 93 184301

    [4]

    Hu B, Yang L, Zhang Y 2006 Phys. Rev. Lett. 97 124302

    [5]

    Konotop V V, Kuzmiak V 2002 Phys. Rev. B 66 235208

    [6]

    Wang J W, Yuan B G, Cheng Y, Liu X J 2015 Sci. China: Phys. Mech. Astron. 58 1

    [7]

    Boechler N, Theocharis G, Daraio C 2011 Nature Mater. 10 665

    [8]

    Tao F, Chen W, Xu W, Pan J T, Du S D 2011 Phys. Rev. E 83 056605

    [9]

    Tao F, Chen W Z, Xu W, Du S D 2012 Acta Phys. Sin. 61 134103 (in Chinese) [陶峰, 陈伟中, 许文, 都思丹 2012 61 134103]

    [10]

    Hirota R, Suzuki K 1970 J. Phys. Soc. Jpn. 28 1366

    [11]

    Motcheyo A B T, Tchawoua C, Siewe M S, Tchameu J D T 2013 Commu. Nonlinear Sci. Numer.Simulat. 18 946

    [12]

    Leon J 2003 Phys. Lett. A 319 130

    [13]

    Marquie P, Bilbault J M, Remoissenet M 1994 Phys. Rev. E 49 828

    [14]

    Kuusela T 1995 Chaos Solut Fract. 5 2419

    [15]

    Haus H A, Wong W S 1996 Rev. Mod. Phys. 68 423

    [16]

    Yu G K, Wang X L, Tao Z 2011 Phys. Rev. E 83 026605

    [17]

    Liu C, Du Z, Sun Z, Gao H J, Guo X 2015 Phys. Rev. Appl. 3 064014

    [18]

    Remoissenet M 1999 Waves Called Solitons: Concepts and Experiments (2nd Ed.) (Berlin: Springer-Verlag) pp37-97

    [19]

    Koon K T V, Leon J, Marquie P, Dinda P T 2007 Phys. Rev. E 75 066604

    [20]

    Nagahama K, Yajima N 1989 J. Phys. Soc. Jpn. 58 1539

    [21]

    Pan J T, Chen W Z, Tao F, Xu W 2011 Phys. Rev. E 83 016601

  • [1]

    Li X F, Ni X, Feng L, Lu M H, He C, Chen Y F 2011 Phys. Rev. Lett. 106 084301

    [2]

    Liang B, Yuan B, Cheng J C 2009 Phys. Rev. Lett. 103 104301

    [3]

    Li B, Wang L, Casati G 2004 Phys. Rev. Lett. 93 184301

    [4]

    Hu B, Yang L, Zhang Y 2006 Phys. Rev. Lett. 97 124302

    [5]

    Konotop V V, Kuzmiak V 2002 Phys. Rev. B 66 235208

    [6]

    Wang J W, Yuan B G, Cheng Y, Liu X J 2015 Sci. China: Phys. Mech. Astron. 58 1

    [7]

    Boechler N, Theocharis G, Daraio C 2011 Nature Mater. 10 665

    [8]

    Tao F, Chen W, Xu W, Pan J T, Du S D 2011 Phys. Rev. E 83 056605

    [9]

    Tao F, Chen W Z, Xu W, Du S D 2012 Acta Phys. Sin. 61 134103 (in Chinese) [陶峰, 陈伟中, 许文, 都思丹 2012 61 134103]

    [10]

    Hirota R, Suzuki K 1970 J. Phys. Soc. Jpn. 28 1366

    [11]

    Motcheyo A B T, Tchawoua C, Siewe M S, Tchameu J D T 2013 Commu. Nonlinear Sci. Numer.Simulat. 18 946

    [12]

    Leon J 2003 Phys. Lett. A 319 130

    [13]

    Marquie P, Bilbault J M, Remoissenet M 1994 Phys. Rev. E 49 828

    [14]

    Kuusela T 1995 Chaos Solut Fract. 5 2419

    [15]

    Haus H A, Wong W S 1996 Rev. Mod. Phys. 68 423

    [16]

    Yu G K, Wang X L, Tao Z 2011 Phys. Rev. E 83 026605

    [17]

    Liu C, Du Z, Sun Z, Gao H J, Guo X 2015 Phys. Rev. Appl. 3 064014

    [18]

    Remoissenet M 1999 Waves Called Solitons: Concepts and Experiments (2nd Ed.) (Berlin: Springer-Verlag) pp37-97

    [19]

    Koon K T V, Leon J, Marquie P, Dinda P T 2007 Phys. Rev. E 75 066604

    [20]

    Nagahama K, Yajima N 1989 J. Phys. Soc. Jpn. 58 1539

    [21]

    Pan J T, Chen W Z, Tao F, Xu W 2011 Phys. Rev. E 83 016601

  • [1] 孙斌, 赵立臣, 刘杰. 双孤子非线性干涉中的狄拉克磁单极势.  , 2023, 72(10): 100501. doi: 10.7498/aps.72.20222416
    [2] 文林, 梁毅, 周晶, 余鹏, 夏雷, 牛连斌, 张晓斐. 线性塞曼劈裂对自旋-轨道耦合玻色-爱因斯坦凝聚体中亮孤子动力学的影响.  , 2019, 68(8): 080301. doi: 10.7498/aps.68.20182013
    [3] 王雪娟, 袁萍, 岑建勇, 张廷龙, 薛思敏, 赵金翠, 许鹤. 依据光谱研究闪电放电通道的半径及能量传输特性.  , 2013, 62(10): 109201. doi: 10.7498/aps.62.109201
    [4] 厉巧巧, 韩文鹏, 赵伟杰, 鲁妍, 张昕, 谭平恒, 冯志红, 李佳. 缺陷单层和双层石墨烯的拉曼光谱及其激发光能量色散关系.  , 2013, 62(13): 137801. doi: 10.7498/aps.62.137801
    [5] 陈雪琼, 陈子阳, 蒲继雄, 朱健强, 张国文. 平顶光束经表面有缺陷的厚非线性介质后的光强分布.  , 2013, 62(4): 044213. doi: 10.7498/aps.62.044213
    [6] 刘超, 岑兆丰, 李晓彤, 许伟才, 尚红波, 能芬, 陈立. 关于部分偏振光能量传递和偏振态的光线椭圆分析方法.  , 2012, 61(13): 134201. doi: 10.7498/aps.61.134201
    [7] 李群宏, 闫玉龙, 杨丹. 耦合电路系统的分岔研究.  , 2012, 61(20): 200505. doi: 10.7498/aps.61.200505
    [8] 林万涛, 陈丽华, 欧阳成, 莫嘉琪. 厄尔尼诺/拉尼娜-南方涛动非线性扰动模型孤子的渐近解法.  , 2012, 61(8): 080204. doi: 10.7498/aps.61.080204
    [9] 吴钦宽. 一类非线性扰动Burgers方程的孤子变分迭代解法.  , 2012, 61(2): 020203. doi: 10.7498/aps.61.020203
    [10] 陶锋, 陈伟中, 许文, 都思丹. 基于非线性超传导的能流不对称传输现象的研究.  , 2012, 61(13): 134103. doi: 10.7498/aps.61.134103
    [11] 张银, 毕勤胜. 具有多分界面的非线性电路中的非光滑分岔.  , 2011, 60(7): 070507. doi: 10.7498/aps.60.070507
    [12] 姜明, 苟富均, 闫安英, 张传武, 苗峰. BeO分子在不同方向外电场中的能量和光谱.  , 2010, 59(11): 7743-7748. doi: 10.7498/aps.59.7743
    [13] 张晓芳, 陈章耀, 毕勤胜. 非线性电路通向混沌的演化过程.  , 2010, 59(5): 3057-3065. doi: 10.7498/aps.59.3057
    [14] 张涛. 光与电子之间能量交换的一个诱因.  , 2009, 58(1): 234-237. doi: 10.7498/aps.58.234
    [15] 张晓芳, 陈章耀, 毕勤胜. 耦合电路中的复杂振荡行为分析.  , 2009, 58(5): 2963-2970. doi: 10.7498/aps.58.2963
    [16] 石兰芳, 莫嘉琪. 一类扰动非线性发展方程的类孤子同伦近似解析解.  , 2009, 58(12): 8123-8126. doi: 10.7498/aps.58.8123
    [17] 黄时中, 马 堃, 吴长义, 倪秀波. 氦原子1sns组态能量及其相对论修正.  , 2008, 57(9): 5469-5475. doi: 10.7498/aps.57.5469
    [18] 郑瑞伦. 圆柱状量子点量子导线复合系统的激子能量和电子概率分布.  , 2007, 56(8): 4901-4907. doi: 10.7498/aps.56.4901
    [19] 莫嘉琪, 张伟江, 何 铭. 非线性广义Landau-Ginzburg-Higgs方程孤子解的变分迭代解法.  , 2007, 56(4): 1847-1850. doi: 10.7498/aps.56.1847
    [20] 卫青, 王奇, 施解龙, 陈园园. 孤子和辐射场的非线性相互作用.  , 2002, 51(1): 99-103. doi: 10.7498/aps.51.99
计量
  • 文章访问数:  5783
  • PDF下载量:  257
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-08
  • 修回日期:  2017-03-02
  • 刊出日期:  2017-05-05

/

返回文章
返回
Baidu
map