搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稳定噪声下一类周期势系统的振动共振

焦尚彬 孙迪 刘丁 谢国 吴亚丽 张青

引用本文:
Citation:

稳定噪声下一类周期势系统的振动共振

焦尚彬, 孙迪, 刘丁, 谢国, 吴亚丽, 张青

Vibrational resonance in a periodic potential system with stable noise

Jiao Shang-Bin, Sun Di, Liu Ding, Xie Guo, Wu Ya-Li, Zhang Qing
PDF
导出引用
  • 将多个低频微弱信号、高频信号和加性稳定噪声共同激励的一类周期势系统作为研究模型,以平均信噪比增益(MSNRI)为性能指标,对稳定噪声环境下周期势系统中的振动共振现象进行了研究,分别探究了稳定噪声的特征参数、对称参数、加性噪声强度放大系数D、高频信号幅值B以及频率对振动共振输出效应的影响.研究结果表明:1)在不同分布的稳定噪声环境下,固定频率(或幅值B),当幅值B(或频率)逐渐增大时,MSNRI-B(或MSNRI-)曲线出现多个峰值,即存在多个B区间(或区间)可诱导振动共振,并且这些区间不会随噪声分布参数或的变化而变化;2) 当加性噪声强度放大系数D发生变化时,幅值B和频率的共振区间没有随着D的变化而变化,表明只有高频信号能量向待测低频信号转移,噪声能量并没有向待测低频信号转移.另外当幅值B、频率固定时,随着D的逐渐增大,依然可以实现微弱信号的检测,表明振动共振可以克服工业现场噪声强度不可调控的缺点.本文研究结果提供了一种新的微弱信号检测方法,在信号处理领域有着潜在的应用价值.
    A periodic potential system excited by multi-low frequency weak signals, the high frequency signal and additive stable noise is constructed. Based on this model, the vibrational resonance phenomenon under stable noise is investigated by taking the mean signal-noise-ratio gain (MSNRI) of output as a performance index. Then the influences of stability index (0 2), the skewness parameter (-1 1) of stable noise, the amplification factor D and the high frequency signal amplitude B, and frequency on the resonant output effect are explored. The results show that under the different distributions of stable noise, the multi-low frequency weak signals detection can be realized by adjusting the high frequency signal parameter B or to induce vibrational resonance within a certain range. When (or ) is given different values, the curve of MSNRI-B has multiple peaks with the increase of B for a certain frequency , and the values of MSNRI corresponding to peaks of the curve of MSNRI-B are equal. So the intervals of B which can induce vibrational resonances are multiple, and the multiple resonance phenomenon turns periodic with the increase of B. Similarly, the curve of MSNRI- also has multiple peaks with the increase of for a certain amplitude B, so the intervals of which can induce vibrational resonances are also multiple. The difference is that the multiple resonance phenomenon becomes irregular with the increase of . Besides, the resonance intervals of B and do not change with nor . Under the different values of amplitude factor D, the resonance intervals of B (or ) do not change with the increase of D, indicating that only the energy of the high frequency signal transfers toward the signals to be measured, and the energy of stable noise does not transfer toward the signals to be measured. Besides, when B and are fixed, it can still be realized to detect the weak signal with the increase of D, which shows that the weak signal detection method based on vibrational resonance can overcome the shortcoming that noise intensity in industrial sites cannot be regulated and controlled. The results provide a new method of detecting the weak signal, and have potential application value in signal processing.
      通信作者: 焦尚彬, jsbzq@163.com
    • 基金项目: 国家自然科学基金重点项目(批准号:61533014)和国家自然科学基金(批准号:U1534208,61503299)资助的课题.
      Corresponding author: Jiao Shang-Bin, jsbzq@163.com
    • Funds: Project supported by the Key Program of National Natural Science Foundation of China (Grant No. 61533014) and the National Natural Science Foundation of China (Grant Nos. U1534208, 61503299).
    [1]

    Benzi R, Sutera A, Vulpiani A 1981 J. Phys. A: Math. Gen. 14 453

    [2]

    Chizhevsky V N, Smeu E, Giacomelli G 2008 U. P. B. Bull. Ser. A 70 31

    [3]

    Yang J H 2011 Ph. D. Dissertation (Nanjing: University of Aeronautics and Astronautics) (in Chinese) [杨建华 2010 博士学位论文 (南京: 航天航空大学)]

    [4]

    Landa P S, McClintock P V E 2000 J. Phys. A: Math. Gen. 33 L433

    [5]

    Gitterman M 2001 J. Phys. A: Math. Gen. 34 L355

    [6]

    Baltanás J P, López L, Blechman I I, Landa P S 2003 Phys. Rev. E 67 066119

    [7]

    Chizhevsky V N 2007 Int. J. Bifurcat. Chaos 18 1767

    [8]

    Lin M, Huang Y M 2007 Vib. Shock 12 151 (in Chinese) [林敏, 黄咏梅 2007 振动与冲击 12 151]

    [9]

    Lin M, Huang Y M 2007 Acta Phys. Sin. 56 6713 (in Chinese) [林敏, 黄咏梅 2007 56 6713]

    [10]

    Yang J H, Liu X B 2010 J. Phys. A 43 122001

    [11]

    Yang J H, Liu X B 2012 Acta Phys. Sin. 61 010505 (in Chinese) [杨建华, 刘先斌 2012 61 010505]

    [12]

    Yang X N, Yang Y F 2015 Acta Phys. Sin. 64 070507 (in Chinese) [杨秀妮, 杨云峰 2015 64 070507]

    [13]

    Blekhman I I, Landa P S 2004 Non-Linear Mech. 39 421

    [14]

    Ullner E, Zaikin A, García-Ojalvo J 2003 Phys. Lett. A 312 348

    [15]

    Deng B, Wang J, Wei X 2009 Chaos 19 013117

    [16]

    Yu H T, Guo X M, Wang J, Deng B, Wei X L 2015 J. Phys. A 436 170

    [17]

    Jeyakumari S, Chinnathambi V, Rajasekar S, Sanjuan M A 2009 Chaos 19 043128

    [18]

    Jeyakumari S, Chinnathambi V, Rajasekar S, Sanjuan M A 2009 Phys. Rev. E 80 046608

    [19]

    Yang J H, Liu H G, Cheng G 2013 Acta Phys. Sin. 62 180503

    [20]

    Mbong T L M D, Siewe M S, Tchawoua C 2016 Mech. Res. Commun. 78 13

    [21]

    Chizhevsky V N, Smeu E, Giacomelli G 2003 Phys. Rev. Lett. 91 220602

    [22]

    Chizhevsky V N 2014 Phys. Rev. E 90 042924

    [23]

    Zaikin A A, Lopez L, Baltanas J P, Kurths J, Sanjuan M A F 2002 Phys. Rev. E 66 011106

    [24]

    Casado-Pascual J, Baltanas J P 2004 Phys. Rev. E 69 059902

    [25]

    Chizhevsky V N, Giacomelli G 2008 Phys. Rev. E 77 051126

    [26]

    Yang J H, Liu X B 2010 Chaos 20 033124

    [27]

    Qiu T S, Zhang X X, Li X B, Sun Y M 2004 Statistical Signal Processing—Non-Gaussian Signal Processing and its Applications (Beijing: Publishing House of Electronics Industry) p140 (in Chinese) [邱天爽, 张旭秀, 李小兵, 孙永梅 2004 统计信号处理——非高斯信号处理及其应用(北京: 电子工业出版社) 第140页]

    [28]

    Zhang G L, L X L, Kang Y M 2012 Acta Phys. Sin. 61 040501 (in Chinese) [张广丽, 吕希路, 康艳梅 2012 61 040501]

    [29]

    Liang Y J, Chen W 2013 Signal Process. 93 242

    [30]

    Jiao S B, Ren C, Huang W C, Liang Y M 2013 Acta Phys. Sin. 62 210501 (in Chinese) [焦尚彬, 任超, 黄伟超, 梁炎明 2013 62 210501]

    [31]

    Zeng L Z, Bao R H, Xu B H 2007 J. Phys. A: Math. Theor. 40 7175

    [32]

    Fogedby H C 1998 Phys. Rev. E 58 1690

    [33]

    Zeng L Z, Xu B H 2010 J. Phys. A: Statist. Mech. Appl. 389 5128

    [34]

    Zhang W Y, Wang Z L, Zhang W D 2009 Control Engineering of China 16 638 (in Chinese) [张文英, 王自力, 张卫东 2009 控制工程 16 638]

    [35]

    Weron R 1996 Statist. Prob. Lett. 28 165

    [36]

    Wan P, Zhan Y J, Li X C 2011 Acta Phys. Sin. 60 040502 (in Chinese) [万频, 詹宜巨, 李学聪 2011 60 040502]

  • [1]

    Benzi R, Sutera A, Vulpiani A 1981 J. Phys. A: Math. Gen. 14 453

    [2]

    Chizhevsky V N, Smeu E, Giacomelli G 2008 U. P. B. Bull. Ser. A 70 31

    [3]

    Yang J H 2011 Ph. D. Dissertation (Nanjing: University of Aeronautics and Astronautics) (in Chinese) [杨建华 2010 博士学位论文 (南京: 航天航空大学)]

    [4]

    Landa P S, McClintock P V E 2000 J. Phys. A: Math. Gen. 33 L433

    [5]

    Gitterman M 2001 J. Phys. A: Math. Gen. 34 L355

    [6]

    Baltanás J P, López L, Blechman I I, Landa P S 2003 Phys. Rev. E 67 066119

    [7]

    Chizhevsky V N 2007 Int. J. Bifurcat. Chaos 18 1767

    [8]

    Lin M, Huang Y M 2007 Vib. Shock 12 151 (in Chinese) [林敏, 黄咏梅 2007 振动与冲击 12 151]

    [9]

    Lin M, Huang Y M 2007 Acta Phys. Sin. 56 6713 (in Chinese) [林敏, 黄咏梅 2007 56 6713]

    [10]

    Yang J H, Liu X B 2010 J. Phys. A 43 122001

    [11]

    Yang J H, Liu X B 2012 Acta Phys. Sin. 61 010505 (in Chinese) [杨建华, 刘先斌 2012 61 010505]

    [12]

    Yang X N, Yang Y F 2015 Acta Phys. Sin. 64 070507 (in Chinese) [杨秀妮, 杨云峰 2015 64 070507]

    [13]

    Blekhman I I, Landa P S 2004 Non-Linear Mech. 39 421

    [14]

    Ullner E, Zaikin A, García-Ojalvo J 2003 Phys. Lett. A 312 348

    [15]

    Deng B, Wang J, Wei X 2009 Chaos 19 013117

    [16]

    Yu H T, Guo X M, Wang J, Deng B, Wei X L 2015 J. Phys. A 436 170

    [17]

    Jeyakumari S, Chinnathambi V, Rajasekar S, Sanjuan M A 2009 Chaos 19 043128

    [18]

    Jeyakumari S, Chinnathambi V, Rajasekar S, Sanjuan M A 2009 Phys. Rev. E 80 046608

    [19]

    Yang J H, Liu H G, Cheng G 2013 Acta Phys. Sin. 62 180503

    [20]

    Mbong T L M D, Siewe M S, Tchawoua C 2016 Mech. Res. Commun. 78 13

    [21]

    Chizhevsky V N, Smeu E, Giacomelli G 2003 Phys. Rev. Lett. 91 220602

    [22]

    Chizhevsky V N 2014 Phys. Rev. E 90 042924

    [23]

    Zaikin A A, Lopez L, Baltanas J P, Kurths J, Sanjuan M A F 2002 Phys. Rev. E 66 011106

    [24]

    Casado-Pascual J, Baltanas J P 2004 Phys. Rev. E 69 059902

    [25]

    Chizhevsky V N, Giacomelli G 2008 Phys. Rev. E 77 051126

    [26]

    Yang J H, Liu X B 2010 Chaos 20 033124

    [27]

    Qiu T S, Zhang X X, Li X B, Sun Y M 2004 Statistical Signal Processing—Non-Gaussian Signal Processing and its Applications (Beijing: Publishing House of Electronics Industry) p140 (in Chinese) [邱天爽, 张旭秀, 李小兵, 孙永梅 2004 统计信号处理——非高斯信号处理及其应用(北京: 电子工业出版社) 第140页]

    [28]

    Zhang G L, L X L, Kang Y M 2012 Acta Phys. Sin. 61 040501 (in Chinese) [张广丽, 吕希路, 康艳梅 2012 61 040501]

    [29]

    Liang Y J, Chen W 2013 Signal Process. 93 242

    [30]

    Jiao S B, Ren C, Huang W C, Liang Y M 2013 Acta Phys. Sin. 62 210501 (in Chinese) [焦尚彬, 任超, 黄伟超, 梁炎明 2013 62 210501]

    [31]

    Zeng L Z, Bao R H, Xu B H 2007 J. Phys. A: Math. Theor. 40 7175

    [32]

    Fogedby H C 1998 Phys. Rev. E 58 1690

    [33]

    Zeng L Z, Xu B H 2010 J. Phys. A: Statist. Mech. Appl. 389 5128

    [34]

    Zhang W Y, Wang Z L, Zhang W D 2009 Control Engineering of China 16 638 (in Chinese) [张文英, 王自力, 张卫东 2009 控制工程 16 638]

    [35]

    Weron R 1996 Statist. Prob. Lett. 28 165

    [36]

    Wan P, Zhan Y J, Li X C 2011 Acta Phys. Sin. 60 040502 (in Chinese) [万频, 詹宜巨, 李学聪 2011 60 040502]

  • [1] 许鹏飞, 公徐路, 李毅伟, 靳艳飞. 含记忆阻尼函数的周期势系统随机共振.  , 2022, 71(8): 080501. doi: 10.7498/aps.71.20211732
    [2] 杨建华, 马强, 吴呈锦, 刘后广. 分数阶双稳系统中的非周期振动共振.  , 2018, 67(5): 054501. doi: 10.7498/aps.67.20172046
    [3] 孙润智, 汪治中, 汪茂胜, 张季谦. 二维格子神经元网络的振动共振和非线性振动共振.  , 2015, 64(11): 110501. doi: 10.7498/aps.64.110501
    [4] 张刚, 胡韬, 张天骐. Levy噪声激励下的幂函数型单稳随机共振特性分析.  , 2015, 64(22): 220502. doi: 10.7498/aps.64.220502
    [5] 杨秀妮, 杨云峰. 具有时滞反馈的非对称双稳系统中的振动共振研究.  , 2015, 64(7): 070507. doi: 10.7498/aps.64.070507
    [6] 马正木, 靳艳飞. 二值噪声激励下欠阻尼周期势系统的随机共振.  , 2015, 64(24): 240502. doi: 10.7498/aps.64.240502
    [7] 范剑, 赵文礼, 张明路, 檀润华, 王万强. 随机共振动力学机理及其微弱信号检测方法的研究.  , 2014, 63(11): 110506. doi: 10.7498/aps.63.110506
    [8] 焦尚彬, 任超, 李鹏华, 张青, 谢国. 乘性和加性α稳定噪声环境下的过阻尼单稳随机共振现象.  , 2014, 63(7): 070501. doi: 10.7498/aps.63.070501
    [9] 张路, 谢天婷, 罗懋康. 双频信号驱动含分数阶内、外阻尼Duffing振子的振动共振.  , 2014, 63(1): 010506. doi: 10.7498/aps.63.010506
    [10] 周薛雪, 赖莉, 罗懋康. 基于分数阶可停振动系统的周期未知微弱信号检测方法.  , 2013, 62(9): 090501. doi: 10.7498/aps.62.090501
    [11] 杨建华, 刘后广, 程刚. 一类五次方振子系统的叉形分叉及振动共振研究.  , 2013, 62(18): 180503. doi: 10.7498/aps.62.180503
    [12] 焦尚彬, 任超, 黄伟超, 梁炎明. 稳定噪声环境下多频微弱信号检测的参数诱导随机共振现象.  , 2013, 62(21): 210501. doi: 10.7498/aps.62.210501
    [13] 王梦蛟, 曾以成, 谢常清, 朱高峰, 唐淑红. Chen系统在微弱信号检测中的应用.  , 2012, 61(18): 180502. doi: 10.7498/aps.61.180502
    [14] 高仕龙, 钟苏川, 韦鹍, 马洪. 基于混沌和随机共振的微弱信号检测.  , 2012, 61(18): 180501. doi: 10.7498/aps.61.180501
    [15] 杨建华, 刘先斌. 线性时滞反馈引起的周期性振动共振分析.  , 2012, 61(1): 010505. doi: 10.7498/aps.61.010505
    [16] 万频, 詹宜巨, 李学聪, 王永华. 一种单稳随机共振系统信噪比增益的数值研究.  , 2011, 60(4): 040502. doi: 10.7498/aps.60.040502
    [17] 李 月, 徐 凯, 杨宝俊, 袁 野, 吴 宁. 混沌振子系统周期解几何特征量分析与微弱周期信号的定量检测.  , 2008, 57(6): 3353-3358. doi: 10.7498/aps.57.3353
    [18] 陈 芳, 曾健华, 周建英. 周期排列共振放大介质的小信号增益特性研究.  , 2007, 56(7): 4175-4179. doi: 10.7498/aps.56.4175
    [19] 林 敏, 黄咏梅. 基于振动共振的随机共振控制.  , 2007, 56(11): 6173-6177. doi: 10.7498/aps.56.6173
    [20] 林 敏, 黄咏梅. 调制与解调用于随机共振的微弱周期信号检测.  , 2006, 55(7): 3277-3282. doi: 10.7498/aps.55.3277
计量
  • 文章访问数:  5891
  • PDF下载量:  243
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-14
  • 修回日期:  2017-03-18
  • 刊出日期:  2017-05-05

/

返回文章
返回
Baidu
map