搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双开口Helmholtz局域共振周期结构低频带隙特性研究

姜久龙 姚宏 杜军 赵静波 邓涛

引用本文:
Citation:

双开口Helmholtz局域共振周期结构低频带隙特性研究

姜久龙, 姚宏, 杜军, 赵静波, 邓涛

Low frequency band gap characteristics of double-split Helmholtz locally resonant periodic structures

Jiang Jiu-Long, Yao Hong, Du Jun, Zhao Jing-Bo, Deng Tao
PDF
导出引用
  • 设计了一种双开口Helmholtz周期结构,该周期结构单元采用双开口内外腔设计,基于多腔耦合局域共振机理,可大大增加局域共振区域,增加能得到较低的低频带隙特性.通过设计调节内腔弧长,可以使带隙移动,达到特定低频频段的隔声效果.在分析低频带隙形成机理和影响因素时,采用声电类比原理建立带隙起始频率和截止频率的计算数学模型并与有限元方法进行对比分析.研究表明:该结构具有良好的低频带隙特性,其最低带隙段为86.9138.2 Hz.外径一定的条件下,低频带隙受内腔弧长、内外腔间隔以及周期单元结构间隔影响,内腔弧长越长,低频带隙越低;内外腔间距离越大,从而内腔体积变小,带隙向高频移动,其低频效果变差;减小结构间距对低频带隙起始频率无影响,但可以大大增加低频带隙截止频率,从而增加带隙宽度.该研究结论可以为低频降噪领域提供一定的实践和理论支持.
    A double-split Helmholtz periodic structure with the characteristic of local resonance is designed and constructed in this paper. The double-split periodic structural cell which can be divided into internal and external cavities is adopted in structure. In such a kind of structure, the resonating area is remarkably expanded while the inner cavity is continuously enlarged. Thus, a satisfactory feature of low frequency resonance can be obtained. At the same time, the adjustability of band gap is achieved by the designed adjustment of the arc length of the inner cavity, therefore, the effect of sound insulation in a specific low frequency band can be achieved. In the analyses of the mechanism and factors of the generation of low frequency band gap, the mathematical model of the upper and lower limits of the band gap is established by using the electric circuit analogy. And some comparative analyses between the methods of electric circuit analogy and finite element method are carried out. The result suggests that a satisfactory feature of low frequency band gap is presented, and the first band-gap ranges from 86.9 Hz to 138.2 Hz. The low frequency band gap can be influenced by the arc length of inner cavity, the space between inner and outer cavities, and the interaction of the structural cells in the periodic arrangement. The longer the arc length of the inner cavity, the lower the low frequency band gap will be; the longer the distance between inner and outer cavities, and the higher the frequency of band gap, the worse the low frequency effect will be; the lower limit of low frequency band gap cannot be influenced by reducing the space between individual structures, on the contrary, the width of low frequency band gap can be sharply increased. Plenty of practical and theoretical support in the field of low frequency noise reduction is offered in the research.
      通信作者: 姚宏, yyyyaaohhong@sohu.com
    • 基金项目: 国家自然科学基金(批准号:11504429)资助的课题.
      Corresponding author: Yao Hong, yyyyaaohhong@sohu.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11504429).
    [1]

    Lai Y, Zhang X, Zhang Z Q 2001 Appl. Phys. Lett. 79 3224

    [2]

    Hussein M I, Hulbert G M, Scott R A 2006 J. Sound Vib. 289 779

    [3]

    Hussein M I, Hulbert G M, Scott R A 2007 J. Sound Vib. 307 865

    [4]

    Chen Y, Li J, Zhou J, Huang T, Zhou M, Yu D Y 2014 Shock Vib. 2014 189539

    [5]

    Liu Z Y, Zhang X X, Mao Y W 2000 Science 289 1734

    [6]

    Liu Z, Chan C T, Sheng P 2005 Phys. Rev. B 71 014103

    [7]

    Li J, Chan C T 2004 Phys. Rev. E 70 055602

    [8]

    Deng K, Ding Y, He Z, Zhao H, Shi J, Liu Z 2009 J. Appl. Phys. 105 124909

    [9]

    Maldovan M 2013 Nature 503 209

    [10]

    Zhang S, Yin L, Fang N 2009 Phys. Rev. Lett. 102 194301

    [11]

    Mei J, Ma G, Yang M, Yang Z, Wen W, Sheng P 2012 Nat. Commun. 32 756

    [12]

    Zhou X, Badreddine Assouar M, Oudich M 2014 J. Appl. Phys. 116 194501

    [13]

    Fang N, Xi D, Xu J, Ambati M, Srituravanich W, Sun C 2006 Nat. Mater. 5 452

    [14]

    Ding C, Hao L, Zhao X 2010 J. Appl. Phys. 108 074911

    [15]

    Hao L M, Ding C L, Zhao X P 2012 Appl. Phys. A 106 807

    [16]

    Guan D, Wu J H, Li J, Gao N S, Hu M 2015 Noise Control Eng. J. 63 20

    [17]

    Li J, Wu J H, Guan D, Gao N S 2014 J. Appl. Phys. 116 103514

    [18]

    Liu M, Hu Z L, Fu X J 2012 Acta Phys. Sin. 61 104302 (in Chinese) [刘敏, 候志林, 傅秀军 2012 61 104302]

    [19]

    Murray A R J, Summers I R, Sambles J R, Hibbins A P 2014 J. Acoust. Soc. Am. 136 980

  • [1]

    Lai Y, Zhang X, Zhang Z Q 2001 Appl. Phys. Lett. 79 3224

    [2]

    Hussein M I, Hulbert G M, Scott R A 2006 J. Sound Vib. 289 779

    [3]

    Hussein M I, Hulbert G M, Scott R A 2007 J. Sound Vib. 307 865

    [4]

    Chen Y, Li J, Zhou J, Huang T, Zhou M, Yu D Y 2014 Shock Vib. 2014 189539

    [5]

    Liu Z Y, Zhang X X, Mao Y W 2000 Science 289 1734

    [6]

    Liu Z, Chan C T, Sheng P 2005 Phys. Rev. B 71 014103

    [7]

    Li J, Chan C T 2004 Phys. Rev. E 70 055602

    [8]

    Deng K, Ding Y, He Z, Zhao H, Shi J, Liu Z 2009 J. Appl. Phys. 105 124909

    [9]

    Maldovan M 2013 Nature 503 209

    [10]

    Zhang S, Yin L, Fang N 2009 Phys. Rev. Lett. 102 194301

    [11]

    Mei J, Ma G, Yang M, Yang Z, Wen W, Sheng P 2012 Nat. Commun. 32 756

    [12]

    Zhou X, Badreddine Assouar M, Oudich M 2014 J. Appl. Phys. 116 194501

    [13]

    Fang N, Xi D, Xu J, Ambati M, Srituravanich W, Sun C 2006 Nat. Mater. 5 452

    [14]

    Ding C, Hao L, Zhao X 2010 J. Appl. Phys. 108 074911

    [15]

    Hao L M, Ding C L, Zhao X P 2012 Appl. Phys. A 106 807

    [16]

    Guan D, Wu J H, Li J, Gao N S, Hu M 2015 Noise Control Eng. J. 63 20

    [17]

    Li J, Wu J H, Guan D, Gao N S 2014 J. Appl. Phys. 116 103514

    [18]

    Liu M, Hu Z L, Fu X J 2012 Acta Phys. Sin. 61 104302 (in Chinese) [刘敏, 候志林, 傅秀军 2012 61 104302]

    [19]

    Murray A R J, Summers I R, Sambles J R, Hibbins A P 2014 J. Acoust. Soc. Am. 136 980

  • [1] 贾静, 肖勇, 王勋年, 王帅星, 温激鸿. 内插缝Helmholtz共振腔吸声超结构的机理分析与优化设计.  , 2024, 73(11): 114301. doi: 10.7498/aps.73.20240250
    [2] 韩东海, 张广军, 赵静波, 姚宏. 新型Helmholtz型声子晶体的低频带隙及隔声特性.  , 2022, 71(11): 114301. doi: 10.7498/aps.71.20211932
    [3] 胥强荣, 沈承, 韩峰, 卢天健. 一种准零刚度声学超材料板的低频宽频带隔声行为.  , 2021, 70(24): 244302. doi: 10.7498/aps.70.20211203
    [4] 乔厚, 何锃, 张恒堃, 彭伟才, 江雯. 二维含多孔介质周期复合结构声传播分析.  , 2019, 68(12): 128101. doi: 10.7498/aps.68.20190164
    [5] 陈鑫, 姚宏, 赵静波, 张帅, 贺子厚, 蒋娟娜. 薄膜与Helmholtz腔耦合结构低频带隙.  , 2019, 68(21): 214208. doi: 10.7498/aps.68.20190673
    [6] 陈鑫, 姚宏, 赵静波, 张帅, 贺子厚, 蒋娟娜. Helmholtz腔与弹性振子耦合结构带隙.  , 2019, 68(8): 084302. doi: 10.7498/aps.68.20182102
    [7] 高东宝, 刘选俊, 田章福, 周泽民, 曾新吾, 韩开锋. 一种基于二维Helmholtz腔阵列的低频宽带隔声结构实验研究.  , 2017, 66(1): 014307. doi: 10.7498/aps.66.014307
    [8] 邹俊辉, 张娟. 混合准周期异质结构的带隙补偿与展宽.  , 2016, 65(1): 014214. doi: 10.7498/aps.65.014214
    [9] 吴健, 白晓春, 肖勇, 耿明昕, 郁殿龙, 温激鸿. 一种多频局域共振型声子晶体板的低频带隙与减振特性.  , 2016, 65(6): 064602. doi: 10.7498/aps.65.064602
    [10] 杨欢欢, 杨帆, 许慎恒, 李懋坤, 曹祥玉, 高军. Ku波段编码式电控超薄周期单元设计与验证.  , 2016, 65(5): 054102. doi: 10.7498/aps.65.054102
    [11] 尹剑飞, 温激鸿, 肖勇, 温熙森. 基于高级统计能量分析的周期加筋板振动特性研究.  , 2015, 64(13): 134301. doi: 10.7498/aps.64.134301
    [12] 刘华松, 刘丹丹, 姜承慧, 王利栓, 姜玉刚, 孙鹏, 季一勤. 周期结构薄膜在折射率色散下反射区特性研究.  , 2014, 63(1): 017801. doi: 10.7498/aps.63.017801
    [13] 刘聪, 徐晓东, 刘晓峻. 全向入射条件下一维固流周期结构中低频声裂隙变化特性研究.  , 2013, 62(20): 204302. doi: 10.7498/aps.62.204302
    [14] 高明, 吴志强. 一维三振子周期结构带隙设计.  , 2013, 62(14): 140507. doi: 10.7498/aps.62.140507
    [15] 张思文, 吴九汇. 局域共振复合单元声子晶体结构的低频带隙特性研究.  , 2013, 62(13): 134302. doi: 10.7498/aps.62.134302
    [16] 鲁思龙, 吴先良, 任信钢, 梅诣偲, 沈晶, 黄志祥. 色散周期结构的辅助场时域有限差分法分析.  , 2012, 61(19): 194701. doi: 10.7498/aps.61.194701
    [17] 王伟, 曹祥玉, 王帅, 王瑞, 郑秋容. 支撑介质对平面型电磁带隙结构带隙特性的影响.  , 2009, 58(7): 4708-4716. doi: 10.7498/aps.58.4708
    [18] 郑秋容, 付云起, 林宝勤, 袁乃昌. 介质覆盖对高阻表面带隙的影响.  , 2006, 55(9): 4698-4703. doi: 10.7498/aps.55.4698
    [19] 邵惠国, 赵 霁, 吴佳文, 周建英. 有限宽度布拉格原子层中光子囚禁与移动孤子的研究.  , 2005, 54(3): 1420-1425. doi: 10.7498/aps.54.1420
    [20] 肖万能, 赵 霁, 王维江, 李润华, 周建英. 周期多层量子阱结构的光吸收特性与电场分布.  , 2003, 52(9): 2293-2297. doi: 10.7498/aps.52.2293
计量
  • 文章访问数:  6605
  • PDF下载量:  284
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-12
  • 修回日期:  2016-12-27
  • 刊出日期:  2017-03-05

/

返回文章
返回
Baidu
map