搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机载极化阵列多输入多输出雷达极化空时自适应处理性能分析

王珽 赵拥军 赖涛 王建涛

引用本文:
Citation:

机载极化阵列多输入多输出雷达极化空时自适应处理性能分析

王珽, 赵拥军, 赖涛, 王建涛

Performance analysis of polarization-space-time adaptive processing for airborne polarization array multiple-input multiple-output radar

Wang Ting, Zhao Yong-Jun, Lai Tao, Wang Jian-Tao
PDF
导出引用
  • 为进一步提升机载多输入多输出(MIMO)雷达空时自适应处理(STAP)的杂波抑制与目标检测性能,本文提出基于极化阵列MIMO雷达的极化空时自适应处理(PSTAP)方法.首先,将新型的极化阵列应用于机载MIMO雷达,建立了机载极化阵列MIMO雷达极化空时自适应处理的信号模型.然后,基于分辨格思想,将杂波影响等效为与杂波自由度相关的独立杂波点源的形式,得到极化阵列MIMO雷达极化空时自适应处理协方差矩阵的等价表示.进而,结合上述等价协方差矩阵,对极化阵列MIMO雷达极化空时自适应处理的输出信杂噪比(SCNR)性能进行了推导分析,讨论了其中极化、空、时匹配系数的影响.理论分析表明,通过利用附加的极化域信息,极化阵列MIMO雷达极化空时自适应处理相比于传统MIMO-STAP能够有效提升杂波抑制性能,更有利于慢速运动目标检测,并且目标与杂波极化参数差别越大,输出SCNR的性能改善效果越明显.仿真结果验证了本文所提极化阵列MIMO雷达极化空时自适应处理方法的有效性与优越性.
    In order to further improve the capabilities of clutter suppression and target detection in airborne multiple-input multiple-output (MIMO) radar space-time adaptive processing (STAP), the polarization-space-time adaptive processing (PSTAP) method based on polarization array MIMO radar is proposed. Firstly, by applying the novel polarization array to airborne MMO radar, the signal model of airborne polarization array MIMO radar PSTAP is established. Then based on the idea of resolution grid, the influence of clutter can be equivalent to the formation of independent point sources of clutter related to the clutter degree of freedom, and an equivalent expression for the covariance matrix in polarization array MIMO radar PSTAP is obtained. Next, combined with the equivalent covariance matrix, the signal-to-clutter-plus-noise ratio (SCNR) performance of the polarization array MIMO radar PSTAP is derived and analyzed. The effects of the polarization, spatial and temporal matching coefficients are discussed. When the target is located in the side-looking direction of the airborne radar, the normalized spatial frequency of the target is zero. Then the spatial transmit and spatial receive matching coefficients between the target and the clutter point source in the center of the space-time plane both approach to one. Meanwhile, the normalized Doppler frequency of the side-looking target is in direct proportion to the target speed. When the target speed decreases to zero, the temporal Doppler matching coefficient between the target and the central clutter source is near to one. Thus taking the spatial and temporal matching coefficients into consideration, the SCNR loss of the traditional MIMO-STAP is approximate to zero. It indicates that for traditional MIMO-STAP, its performance of detecting low-speed target is severely degraded by the clutter source, and target detection can hardly be realized just in space-time domains. However, through utilizing the additional polarization information to take advantage of the polarization matching coefficient, the polarization array MIMO radar PSTAP increases the SCNR loss and remarkably lessens the influence of the central clutter source. According to the above theoretical analysis, we can come to the conclusion that the polarization array MIMO radar PSTAP can effectively promote the capability of clutter suppression compared with the traditional MIMO-STAP, which is beneficial to the detection of the moving target with low-speed. Moreover, the improvement of output SCNR performance becomes more significant with increasing the differences between the polarization parameters of target and those of clutter. Therefore, the polarization array MIMO radar PSTAP has great application value for practical engineering. The simulation results verify the validity and superiority of the proposed polarization array MIMO radar PSTAP method.
      通信作者: 王珽, wangtingsp@163.com
    • 基金项目: 国家自然科学基金(批准号:61501513,41301481)资助的课题.
      Corresponding author: Wang Ting, wangtingsp@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos.61501513,41301481).
    [1]

    Yang Y, Wang B Z, Ding S 2016 Chin. Phys. B 25 050101

    [2]

    Du Z C, Tang B, Liu L X 2006 Chin. Phys. 15 2481

    [3]

    Hai L, Zhang Y R, Pan C L 2013 Acta Phys. Sin. 62 238402 (in Chinese)[海凛, 张业荣, 潘灿林 2013 62 238402]

    [4]

    Bliss D W, Forsythe K W 2003 Proceedings of 37th Asilomar Conference on Signals, System, and Computers Pacific Grove, USA, November 9-12, 2003 p54

    [5]

    Fishler E, Haimovich A, Blum R S, Chizhik D, Cimini L J, Valenzuela R 2004 Proceedings of IEEE Radar Conference Philadelphia, USA, April 26-29, 2004 p71

    [6]

    Fishler E, Haimovich A, Blum R S, Cimini L J, Chizhik D, Valenzuela R 2006 IEEE Trans. Signal Process. 54 823

    [7]

    Haimovich A, Blum R S, Cimini L J 2008 IEEE Signal Process. Mag. 25 116

    [8]

    Li J, Stoica P 2007 IEEE Signal Process. Mag. 24 106

    [9]

    Wen F Q, Zang G, Ben D 2015 Chin. Phys. B 24 110201

    [10]

    Huang C, Sun D J, Zhang D L, Teng T T 2014 Acta Phys. Sin. 63 188401 (in Chinese)[黄聪, 孙大军, 张殿伦, 滕婷婷 2014 63 188401]

    [11]

    Wang T, Zhao Y J, Hu T 2015 J. Radars 4 136 (in Chinese)[王珽, 赵拥军, 胡涛 2015 雷达学报 4 136]

    [12]

    Brennan L E, Reed I S 1973 IEEE Trans. Aerosp. Electron. Syst. 9 237

    [13]

    Guerci J R 2003 Space Time Adaptive Processing for Radar (Norwood, MA:Artech House, Inc.) pp3-55

    [14]

    Klemm R 2002 Principles of Space-Time Adaptive Processing (London:The Institution of Electrical Engineers) pp2-45

    [15]

    Wang Y L, Peng Y N 2000 Space-Time Adaptive Processing (Beijing:Tsinghua University Press) pp1-9 (in Chinese)[王永良, 彭应宁 2000 空时自适应信号处理 (北京:清华大学出版社) 第1–9页]

    [16]

    Wang Y L, Li T Q 2008 J. China Acad. Electron. Inf. Technol. 3 271 (in Chinese)[王永良, 李天泉 2008 中国电子科学研究院学报 3 271]

    [17]

    Zhang L, Xu Y G 2015 Modern Radar 37 1 (in Chinese)[张良, 徐艳国 2015 现代雷达 37 1]

    [18]

    Chen C Y, Vaidyanathan P P 2008 IEEE Trans. Signal Process. 56 623

    [19]

    Wang W, Chen Z, Li X, Wang B 2016 IET Radar Sonar Navig. 10 459

    [20]

    Zhang W, He Z S, Li J, Li C H 2015 IET Radar Sonar Navig. 9 772

    [21]

    Wu D J, Xu Z H, Zhang L, Xiong Z Y, Xiao S P 2012 Prog. Electromagn. Res. 129 579

    [22]

    Wu D J, Xu Z H, Xiong Z Y, Zhang L, Xiao S P 2012 Acta Electron. Sin. 40 1430 (in Chinese)[吴迪军, 徐振海, 熊子源, 张亮, 肖顺平 2012 电子学报 40 1430]

    [23]

    Du W T, Liao G S, Yang Z W, Xin Z H 2014 Acta Electron. Sin. 42 523 (in Chinese)[杜文韬, 廖桂生, 杨志伟, 辛志慧 2014 电子学报 42 523]

    [24]

    Zhao X B, Yan W, Wang Y Q, Lu W, Ma S 2014 Acta Phys. Sin. 63 218401 (in Chinese)[赵现斌, 严卫, 王迎强, 陆文, 马烁 2014 63 218401]

    [25]

    Xu Y G, Xu Z W, Gong X F 2013 Signal Processing Based on Polarization Sensitive Array (Beijing:Beijing Institute of Technology Press) pp1-21 (in Chinese)[徐友根, 刘志文, 龚晓峰 2013 极化敏感阵列信号处理 (北京:北京理工大学出版社) 第1–21页]

    [26]

    Wang X S 2016 J. Radars 5 119 (in Chinese)[王雪松 2016 雷达学报 5 119]

    [27]

    Gu C, He J, Li H, Zhu X 2013 Signal Process. 93 2103

    [28]

    Zheng G M, Yang M L, Chen B X, Yang R X 2012 J. Electron. Inf. Technol. 34 2635 (in Chinese)[郑桂妹, 杨明磊, 陈伯孝, 杨瑞兴 2012 电子与信息学报 34 2635]

    [29]

    Wang K R, Zhu X H, He J 2012 J. Electron. Inf. Technol. 34 160 (in Chinese)[王克让, 朱晓华, 何劲 2012 电子与信息学报 34 160]

    [30]

    Li N, Cui G, Kong L, Liu Q H 2015 IET Radar Sonar Navig. 9 285

    [31]

    Gogineni S, Nehorai A 2010 IEEE Trans. Signal Process. 58 1689

    [32]

    Wu Y, Tang J, Peng Y N 2011 IEEE Trans. Aerosp. Electron. Syst. 47 569

    [33]

    Zhang X D 2013 Matrix Analysis and Applications (Second Edition) (Beijing:Tsinghua University Press) pp26-72 (in Chinese)[张贤达 2013 矩阵分析与应用(第2版) (北京:清华大学出版社) 第26–72页]

  • [1]

    Yang Y, Wang B Z, Ding S 2016 Chin. Phys. B 25 050101

    [2]

    Du Z C, Tang B, Liu L X 2006 Chin. Phys. 15 2481

    [3]

    Hai L, Zhang Y R, Pan C L 2013 Acta Phys. Sin. 62 238402 (in Chinese)[海凛, 张业荣, 潘灿林 2013 62 238402]

    [4]

    Bliss D W, Forsythe K W 2003 Proceedings of 37th Asilomar Conference on Signals, System, and Computers Pacific Grove, USA, November 9-12, 2003 p54

    [5]

    Fishler E, Haimovich A, Blum R S, Chizhik D, Cimini L J, Valenzuela R 2004 Proceedings of IEEE Radar Conference Philadelphia, USA, April 26-29, 2004 p71

    [6]

    Fishler E, Haimovich A, Blum R S, Cimini L J, Chizhik D, Valenzuela R 2006 IEEE Trans. Signal Process. 54 823

    [7]

    Haimovich A, Blum R S, Cimini L J 2008 IEEE Signal Process. Mag. 25 116

    [8]

    Li J, Stoica P 2007 IEEE Signal Process. Mag. 24 106

    [9]

    Wen F Q, Zang G, Ben D 2015 Chin. Phys. B 24 110201

    [10]

    Huang C, Sun D J, Zhang D L, Teng T T 2014 Acta Phys. Sin. 63 188401 (in Chinese)[黄聪, 孙大军, 张殿伦, 滕婷婷 2014 63 188401]

    [11]

    Wang T, Zhao Y J, Hu T 2015 J. Radars 4 136 (in Chinese)[王珽, 赵拥军, 胡涛 2015 雷达学报 4 136]

    [12]

    Brennan L E, Reed I S 1973 IEEE Trans. Aerosp. Electron. Syst. 9 237

    [13]

    Guerci J R 2003 Space Time Adaptive Processing for Radar (Norwood, MA:Artech House, Inc.) pp3-55

    [14]

    Klemm R 2002 Principles of Space-Time Adaptive Processing (London:The Institution of Electrical Engineers) pp2-45

    [15]

    Wang Y L, Peng Y N 2000 Space-Time Adaptive Processing (Beijing:Tsinghua University Press) pp1-9 (in Chinese)[王永良, 彭应宁 2000 空时自适应信号处理 (北京:清华大学出版社) 第1–9页]

    [16]

    Wang Y L, Li T Q 2008 J. China Acad. Electron. Inf. Technol. 3 271 (in Chinese)[王永良, 李天泉 2008 中国电子科学研究院学报 3 271]

    [17]

    Zhang L, Xu Y G 2015 Modern Radar 37 1 (in Chinese)[张良, 徐艳国 2015 现代雷达 37 1]

    [18]

    Chen C Y, Vaidyanathan P P 2008 IEEE Trans. Signal Process. 56 623

    [19]

    Wang W, Chen Z, Li X, Wang B 2016 IET Radar Sonar Navig. 10 459

    [20]

    Zhang W, He Z S, Li J, Li C H 2015 IET Radar Sonar Navig. 9 772

    [21]

    Wu D J, Xu Z H, Zhang L, Xiong Z Y, Xiao S P 2012 Prog. Electromagn. Res. 129 579

    [22]

    Wu D J, Xu Z H, Xiong Z Y, Zhang L, Xiao S P 2012 Acta Electron. Sin. 40 1430 (in Chinese)[吴迪军, 徐振海, 熊子源, 张亮, 肖顺平 2012 电子学报 40 1430]

    [23]

    Du W T, Liao G S, Yang Z W, Xin Z H 2014 Acta Electron. Sin. 42 523 (in Chinese)[杜文韬, 廖桂生, 杨志伟, 辛志慧 2014 电子学报 42 523]

    [24]

    Zhao X B, Yan W, Wang Y Q, Lu W, Ma S 2014 Acta Phys. Sin. 63 218401 (in Chinese)[赵现斌, 严卫, 王迎强, 陆文, 马烁 2014 63 218401]

    [25]

    Xu Y G, Xu Z W, Gong X F 2013 Signal Processing Based on Polarization Sensitive Array (Beijing:Beijing Institute of Technology Press) pp1-21 (in Chinese)[徐友根, 刘志文, 龚晓峰 2013 极化敏感阵列信号处理 (北京:北京理工大学出版社) 第1–21页]

    [26]

    Wang X S 2016 J. Radars 5 119 (in Chinese)[王雪松 2016 雷达学报 5 119]

    [27]

    Gu C, He J, Li H, Zhu X 2013 Signal Process. 93 2103

    [28]

    Zheng G M, Yang M L, Chen B X, Yang R X 2012 J. Electron. Inf. Technol. 34 2635 (in Chinese)[郑桂妹, 杨明磊, 陈伯孝, 杨瑞兴 2012 电子与信息学报 34 2635]

    [29]

    Wang K R, Zhu X H, He J 2012 J. Electron. Inf. Technol. 34 160 (in Chinese)[王克让, 朱晓华, 何劲 2012 电子与信息学报 34 160]

    [30]

    Li N, Cui G, Kong L, Liu Q H 2015 IET Radar Sonar Navig. 9 285

    [31]

    Gogineni S, Nehorai A 2010 IEEE Trans. Signal Process. 58 1689

    [32]

    Wu Y, Tang J, Peng Y N 2011 IEEE Trans. Aerosp. Electron. Syst. 47 569

    [33]

    Zhang X D 2013 Matrix Analysis and Applications (Second Edition) (Beijing:Tsinghua University Press) pp26-72 (in Chinese)[张贤达 2013 矩阵分析与应用(第2版) (北京:清华大学出版社) 第26–72页]

  • [1] 陈松懋, 苏秀琴, 郝伟, 张振扬, 汪书潮, 朱文华, 王杰. 基于光子计数激光雷达的自适应门控抑噪及三维重建算法.  , 2022, 71(10): 104202. doi: 10.7498/aps.71.20211697
    [2] 张玉燕, 殷东哲, 温银堂, 罗小元. 基于自适应Kalman滤波的平面阵列电容成像.  , 2021, 70(11): 118102. doi: 10.7498/aps.70.20210442
    [3] 谢前朋, 潘小义, 陈吉源, 肖顺平. 基于长电偶极子和大磁圆环的新型电磁矢量传感器双基地多输入多输出雷达角度和极化参数联合估计.  , 2021, 70(4): 044302. doi: 10.7498/aps.70.20201111
    [4] 谢前朋, 潘小义, 陈吉源, 肖顺平. 基于稀疏阵列的电磁矢量传感器多输入多输出雷达高分辨角度和极化参数联合估计.  , 2020, 69(7): 074302. doi: 10.7498/aps.69.20191895
    [5] 李静和, 何展翔, 杨俊, 孟淑君, 李文杰, 廖小倩. 曲波域统计量自适应阈值探地雷达数据去噪技术.  , 2019, 68(9): 090501. doi: 10.7498/aps.68.20182061
    [6] 王梦蛟, 周泽权, 李志军, 曾以成. 混沌信号自适应协同滤波去噪.  , 2018, 67(6): 060501. doi: 10.7498/aps.67.20172470
    [7] 王岩, 王飞, 王挺峰, 谢京江. 基于自适应阈值的阵列激光三维点云配准.  , 2016, 65(24): 249501. doi: 10.7498/aps.65.249501
    [8] 曹超, 王胜, 唐科, 尹伟, 吴洋. 极化中子照相磁场量化技术方案比较与分析.  , 2014, 63(18): 182801. doi: 10.7498/aps.63.182801
    [9] 黄聪, 孙大军, 张殿伦, 滕婷婷. 双基地多输入多输出虚拟阵列的稳健低旁瓣波束优化技术.  , 2014, 63(18): 188401. doi: 10.7498/aps.63.188401
    [10] 曹超, 李航, 霍合勇, 唐科, 孙勇. 装置极化效率对极化中子成像质量的影响及修正分析.  , 2013, 62(16): 162801. doi: 10.7498/aps.62.162801
    [11] 赵现斌, 严卫, 孔毅, 韩丁, 刘文俊. 机载C波段全极化SAR海面风矢量反演理论研究及实验验证.  , 2013, 62(13): 138402. doi: 10.7498/aps.62.138402
    [12] 王巍, 乔钢, 邢思宇. 无边带信息的多输入多输出正交频分复用水声通信图样选择峰均比抑制算法.  , 2013, 62(18): 184301. doi: 10.7498/aps.62.184301
    [13] 姚殊畅, 付松年, 张敏明, 唐明, 沈平, 刘德明. 基于少模光纤的模分复用系统多输入多输出均衡与解调.  , 2013, 62(14): 144215. doi: 10.7498/aps.62.144215
    [14] 艾未华, 孔毅, 赵现斌. 基于小波的多极化机载合成孔径雷达海面风向反演.  , 2012, 61(14): 148403. doi: 10.7498/aps.61.148403
    [15] 海凛, 张业荣. 任意分集方式多输入多输出无线通信系统的统计信道建模.  , 2012, 61(18): 180101. doi: 10.7498/aps.61.180101
    [16] 肖海林, 欧阳缮, 聂在平. 多输入多输出量子密钥分发信道容量研究.  , 2009, 58(10): 6779-6785. doi: 10.7498/aps.58.6779
    [17] 周颖, 臧强. 多输入多输出不确定非线性系统的输出反馈自适应机动控制.  , 2009, 58(11): 7565-7572. doi: 10.7498/aps.58.7565
    [18] 沈启坤, 张天平, 孙 妍. 具有死区和饱和输入的自适应混沌控制.  , 2007, 56(11): 6263-6269. doi: 10.7498/aps.56.6263
    [19] 李统藏, 刘之景, 王克逸. 自旋极化电子从铁磁金属注入半导体时自旋极化的计算.  , 2003, 52(11): 2912-2917. doi: 10.7498/aps.52.2912
    [20] 薛月菊, 尹逊和, 冯汝鹏. 用基于输入-输出线性化的自适应模糊方法控制混沌系统.  , 2000, 49(4): 641-646. doi: 10.7498/aps.49.641
计量
  • 文章访问数:  5681
  • PDF下载量:  158
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-26
  • 修回日期:  2016-10-25
  • 刊出日期:  2017-02-05

/

返回文章
返回
Baidu
map