搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Rh(111)表面NO分子对多层膜的原子结构

汪辰超 吴太权 王新燕 江影

引用本文:
Citation:

Rh(111)表面NO分子对多层膜的原子结构

汪辰超, 吴太权, 王新燕, 江影

Structure of NO dimer multilayer on Rh(111)

Wang Chen-Chao, Wu Tai-Quan, Wang Xin-Yan, Jiang Ying
PDF
导出引用
  • 利用第一性原理研究了NO分子对[(NO)2]分子链、分子单层膜,Rh(111)表面上的(NO)2分子单层膜和多层膜的原子结构.(NO)2分子单体在虚拟Rh(111)表面自组装成两个稳定的分子链,(NO)2分子平行有序排列,氧原子和氮原子都呈现(100)和(111)结构.在虚拟Rh(111)-(13)上,1.00 ML(molecular layer)覆盖度时,(NO)2分子自组装成两个稳定的分子单层膜(M1和M2),分子膜M1中NN键与衬底的夹角为7090;分子膜M2中NN键平行衬底.在M2/Rh(111)中,(NO)2分子可吸附于顶位、fcc空心位和hcp空心位,通过电荷转移可解释两个空心位的稳定性强于顶位.Rh(111)表面(NO)2分子多层膜系统中,(NO)2分子垂直吸附于两个空心位,第一层是分子膜M2,NN键平行于衬底,第二层及以上都是分子膜M1,NN键与衬底夹角为7090,分子膜真空层为0.31 nm0.02 nm.
    Molecular self-assembly is the spontaneous organization of molecules under thermodynamic equilibrium conditions into well-defined arrangements via cooperative effects between chemical bonds and weak noncovalent interactions. Molecules undergo self-association without external instruction to form hierarchical structures. Molecular self-assembly is ubiquitous in nature and has recently emerged as a new strategy in chemical biosynthesis, polymer science and engineering. NO monomer is apt to be absorbed on the surfaces of some metals such as Ir(111), Ni(111), Pd(111), Pt(111), Rh(111) and Au(111), and the interactions of NO monomer with the metal surfaces have been extensively studied. When NO monomer is weakly adsorbed on the noble-metal surface, it cannot be reduced completely but forms a stable structure, which is named NO dimer. The first-principle technique is employed to determine the structures of NO dimer ((NO)2) molecular chains and monolayers on virtual Rh(111), as well as (NO)2 monolayer and multilayer on Rh(111). First, (NO)2 monomers are assembled into two stable molecular chains on the virtual Rh(111) surface, whose bind energies are 0.309 and 0.266 eV, respectively. The molecular chains are self-assembly systems, in which (NO)2 monomers are parallel and ordered, and the O atoms and N atoms are shown to be of (100) and (111) structures, respectively. Then, the two molecular chains are assembled into two stable monolayers (denoted as M1 and M2) on the virtual Rh(111)-(13), and the coverage is 1.00 ML. In the M1 monolayer, the angle between the NN bond of (NO)2 monomer and the substrate is in a range of 70-90, and in the M2 monolayer, the NN bond is parallel to the substrate.In the adsorption system of M2/Rh(111), (NO)2 molecules can be adsorbed on the top as well as the hcp and fcc hollow sites. When (NO)2 molecules are adsorbed on the top site, the adsorption system is best described by the electron structure Rh+0.14N0=O-0.14, and when (NO)2 molecules are absorbed on the two hollow sites, the adsorption system is described by the electron structure Rh+0.34N-0.18=O-0.16. Therefore, (NO)2 molecules are more apt to be adsorbed on the two hollow sites than on the top site. In the adsorption systems of M1+M2/Rh(111) and M1+(M1+M2)/Rh(111), (NO)2 molecules are adsorbed vertically on the two hollow sites, the NN bond is parallel to the substrate in the first monolayer, and the angle between the NN bond and the substrate is in a range of 70-90 in the second and third monolayers. The interaction between the neighbor monolayers is about 0.01 eV, and the thickness of the vacuum layer is 0.31 nm0.02 nm.
      通信作者: 吴太权, buckyballling@hotmail.com
    • 基金项目: 浙江省自然科学基金(批准号:LY13E080007)资助的课题.
      Corresponding author: Wu Tai-Quan, buckyballling@hotmail.com
    • Funds: Project Supported by the National Natural Science Foundation of Zhejiang Province, China (Grant No. LY13E080007).
    [1]

    Whitesides G M, Mathias J P, Seto C T 1991 Science 254 1312

    [2]

    Hickman J J, Ofer D, Laibinis P E, Whitesides G M, Wrighton M S 1991 Science 252 688

    [3]

    Fujita M, Ibukuro F, Hagihara H, Ogura K 1994 Nature 367 720

    [4]

    Wang W, Huang L, Zhang Y, Li C M, Zhang H Q, Gu N, Peng L, Zhao L X, Shen H Y, Chen T S, Hao L P 2002 Acta Phys. Sin. 51 63 (in Chinese)[王伟, 黄岚, 张宇, 李昌敏, 张海黔, 顾宁, 彭力, 赵丽新, 沈浩瀛, 陈堂生, 郝丽萍2002 51 63]

    [5]

    Hu H L, Zhang K, Wang Z X, Kong T, Hu Y, Wang X P 2007 Acta Phys. Sin. 56 1674 (in Chinese)[胡海龙, 张琨, 王振兴, 孔涛, 胡颖, 王晓平2007 56 1674]

    [6]

    Palmer R M J, Ferrige A G, Moncada 1987 Nature 327 524

    [7]

    Orville-Thomas W J 1954 J. Chem. Phys. 22 1267

    [8]

    Root T W, Fisher G B, Schmidt L D 1986 J. Chem. Phys. 85 4679

    [9]

    Loffreda D, Simon D, Sautet P 1998 Chem. Phys. Lett. 291 15

    [10]

    Wallace W T, Cai Y, Chen M S, Goodman D W 2006 J. Phys. Chem. B 110 6245

    [11]

    Nakamura I, Kobayashi Y, Hamada H, Fujitani T 2006 Surf. Sci. 600 3235

    [12]

    Nakai I, Kondoh H, Shimada T, Yokota R, Katayama T, Ohta T 2007 J. Chem. Phys. 127 024701

    [13]

    Jansen A P J, Popa C 2008 Phys. Rev. B 78 085404

    [14]

    Wu T Q, Zhu P, Jiao Z W 2012 Appl. Surf. Sci. 263 502

    [15]

    Brown W A, Gardner P, King D A 1995 J. Phys. Chem. 99 7065

    [16]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 78 3865

    [17]

    Wu T Q, Wang X Y, Jiao Z W, Luo H L, Zhu P 2013 Acta Phys. Sin. 62 186301 (in Chinese)[吴太权, 王新燕, 焦志伟, 罗宏雷, 朱萍2013 62 186301]

    [18]

    Wu T Q, Wang X Y, Jiao Z W, Luo H L, Zhu P 2014 Vacuum 101 399

    [19]

    Wu T Q, Wang X Y, Zhou H, Luo H L, Jiao Z W, Zhu P 2014 Appl. Surf. Sci. 290 425

    [20]

    Wu T Q, Cao D, Wang X Y, Jiao Z W, Jiang Z T, Chen M G, Luo H L, Zhu P 2015 Appl. Surf. Sci. 339 1

    [21]

    Wu T Q, Cao D, Wang X Y, Jiao Z W, Chen M G, Luo H L, Zhu P 2015 Appl. Surf. Sci. 330 158

    [22]

    Guo Z H, Yan X H, Xiao Y 2010 Phys. Lett. A 374 1534

    [23]

    Florence A J, Bardin J, Johnston B, Shankland N, Griffin T A N, Shankland K 2009 Z. Kristallogr. Suppl. 30 215

    [24]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717

  • [1]

    Whitesides G M, Mathias J P, Seto C T 1991 Science 254 1312

    [2]

    Hickman J J, Ofer D, Laibinis P E, Whitesides G M, Wrighton M S 1991 Science 252 688

    [3]

    Fujita M, Ibukuro F, Hagihara H, Ogura K 1994 Nature 367 720

    [4]

    Wang W, Huang L, Zhang Y, Li C M, Zhang H Q, Gu N, Peng L, Zhao L X, Shen H Y, Chen T S, Hao L P 2002 Acta Phys. Sin. 51 63 (in Chinese)[王伟, 黄岚, 张宇, 李昌敏, 张海黔, 顾宁, 彭力, 赵丽新, 沈浩瀛, 陈堂生, 郝丽萍2002 51 63]

    [5]

    Hu H L, Zhang K, Wang Z X, Kong T, Hu Y, Wang X P 2007 Acta Phys. Sin. 56 1674 (in Chinese)[胡海龙, 张琨, 王振兴, 孔涛, 胡颖, 王晓平2007 56 1674]

    [6]

    Palmer R M J, Ferrige A G, Moncada 1987 Nature 327 524

    [7]

    Orville-Thomas W J 1954 J. Chem. Phys. 22 1267

    [8]

    Root T W, Fisher G B, Schmidt L D 1986 J. Chem. Phys. 85 4679

    [9]

    Loffreda D, Simon D, Sautet P 1998 Chem. Phys. Lett. 291 15

    [10]

    Wallace W T, Cai Y, Chen M S, Goodman D W 2006 J. Phys. Chem. B 110 6245

    [11]

    Nakamura I, Kobayashi Y, Hamada H, Fujitani T 2006 Surf. Sci. 600 3235

    [12]

    Nakai I, Kondoh H, Shimada T, Yokota R, Katayama T, Ohta T 2007 J. Chem. Phys. 127 024701

    [13]

    Jansen A P J, Popa C 2008 Phys. Rev. B 78 085404

    [14]

    Wu T Q, Zhu P, Jiao Z W 2012 Appl. Surf. Sci. 263 502

    [15]

    Brown W A, Gardner P, King D A 1995 J. Phys. Chem. 99 7065

    [16]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 78 3865

    [17]

    Wu T Q, Wang X Y, Jiao Z W, Luo H L, Zhu P 2013 Acta Phys. Sin. 62 186301 (in Chinese)[吴太权, 王新燕, 焦志伟, 罗宏雷, 朱萍2013 62 186301]

    [18]

    Wu T Q, Wang X Y, Jiao Z W, Luo H L, Zhu P 2014 Vacuum 101 399

    [19]

    Wu T Q, Wang X Y, Zhou H, Luo H L, Jiao Z W, Zhu P 2014 Appl. Surf. Sci. 290 425

    [20]

    Wu T Q, Cao D, Wang X Y, Jiao Z W, Jiang Z T, Chen M G, Luo H L, Zhu P 2015 Appl. Surf. Sci. 339 1

    [21]

    Wu T Q, Cao D, Wang X Y, Jiao Z W, Chen M G, Luo H L, Zhu P 2015 Appl. Surf. Sci. 330 158

    [22]

    Guo Z H, Yan X H, Xiao Y 2010 Phys. Lett. A 374 1534

    [23]

    Florence A J, Bardin J, Johnston B, Shankland N, Griffin T A N, Shankland K 2009 Z. Kristallogr. Suppl. 30 215

    [24]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717

  • [1] 李白, 吴太权, 汪辰超, 江影. Au(111)表面甲基联二苯丙硫醇盐单层膜的原子结构.  , 2016, 65(21): 216301. doi: 10.7498/aps.65.216301
    [2] 吴太权, 王新燕, 焦志伟, 罗宏雷, 朱萍. Cu(100)表面CO分子单层膜的原子结构.  , 2013, 62(18): 186301. doi: 10.7498/aps.62.186301
    [3] 刘佳, 徐玲玲, 张海霖, 吕威, 朱琳, 高红, 张喜田. 一步水热法在Al掺杂ZnO纳米盘上可控自组装合成ZnO纳米棒阵列.  , 2012, 61(2): 027802. doi: 10.7498/aps.61.027802
    [4] 张保花, 郭福强, 孙毅, 王俊珺, 李艳青, 智丽丽. 溶剂热再结晶合成由纳米颗粒自组装成的一维CdS纳米棒.  , 2012, 61(13): 138101. doi: 10.7498/aps.61.138101
    [5] 臧渡洋, 张永建. 水/空气界面纳米颗粒单层膜流变特性的锥体压入法研究.  , 2012, 61(2): 026803. doi: 10.7498/aps.61.026803
    [6] 姜平, 司道伟, 朱晖文, 李培刚, 王顺利, 崔灿, 唐为华. (BiFeO3)25/(La0.7Sr0.3MnO3)25 多层膜的光学和电学性质.  , 2011, 60(11): 117203. doi: 10.7498/aps.60.117203
    [7] 臧渡洋, 张永建, Langevin Dominique. SiO2纳米颗粒单层膜流变特性的双Wilhelmy片法研究.  , 2011, 60(7): 076801. doi: 10.7498/aps.60.076801
    [8] 陈昌兆, 蔡传兵, 刘志勇, 应利良, 高 波, 刘金磊, 鲁玉明. NdBa2Cu3O7-δ/YBa2Cu3O7-δ多层膜体系的外延结构和磁通钉扎的研究.  , 2008, 57(7): 4371-4378. doi: 10.7498/aps.57.4371
    [9] 翟中海, 滕 蛟, 李宝河, 王立锦, 于广华, 朱逢吾. 具有垂直各向异性(Pt/Co)n/FeMn多层膜的交换偏置.  , 2006, 55(4): 2064-2068. doi: 10.7498/aps.55.2064
    [10] 魏向军, 徐 清, 王天民, 贾全杰, 王焕华, 冯松林. 周期性多层膜合金化制取的TiNi形状记忆薄膜的室温微结构特征.  , 2006, 55(3): 1508-1511. doi: 10.7498/aps.55.1508
    [11] 王文静, 袁慧敏, 姜 山, 萧淑琴, 颜世申. FeCuCrVSiB单层和多层膜的横向巨磁阻抗效应.  , 2006, 55(11): 6108-6112. doi: 10.7498/aps.55.6108
    [12] 黄 阀, 李宝河, 杨 涛, 翟中海, 朱逢吾. 多层膜[Co85Cr15/Pt]20的磁性、垂直磁记录特性和微结构的关系.  , 2005, 54(4): 1841-1846. doi: 10.7498/aps.54.1841
    [13] 陈卫平, 萧淑琴, 王文静, 姜 山, 刘宜华. FeCuCrVSiB多层膜巨磁阻抗效应的研究.  , 2005, 54(6): 2929-2933. doi: 10.7498/aps.54.2929
    [14] 乔 峰, 黄信凡, 朱 达, 马忠元, 邹和成, 隋妍萍, 李 伟, 周晓辉, 陈坤基. 激光限制结晶技术制备nc-Si/SiO2多层膜.  , 2004, 53(12): 4303-4307. doi: 10.7498/aps.53.4303
    [15] 王洪昌, 王占山, 李佛生, 秦树基, 杜芸, 王利, 张众, 陈玲燕. 帽层对极紫外多层膜反射特性影响分析.  , 2004, 53(7): 2368-2372. doi: 10.7498/aps.53.2368
    [16] 温晓文, 李国俊, 仇高新, 李永平, 丁 磊, 隋 展. 多缺陷结构的一维磁光多层膜隔离器.  , 2004, 53(10): 3571-3576. doi: 10.7498/aps.53.3571
    [17] 周 勋, 梁冰青, 王 海, 张臻蓉, 陈良尧, 王荫君. PdMn/Co多层膜的磁性和磁光特性研究.  , 2003, 52(10): 2616-2621. doi: 10.7498/aps.52.2616
    [18] 徐润, 沈明荣, 葛水兵. 溶胶-凝胶法制备BaTiO3/SrTiO3多层膜的介电增强效应.  , 2002, 51(5): 1139-1143. doi: 10.7498/aps.51.1139
    [19] 梁冰青, 陈 熹, 周 勋, 刘 洪, 王 海, 唐云俊, 王荫君, 王松有, 陈良尧. PtMn/Co多层膜的磁光特性研究.  , 2000, 49(10): 2059-2065. doi: 10.7498/aps.49.2059
    [20] 周云松, 陈金昌, 林多梁. 多层伊辛膜的磁学性质.  , 2000, 49(12): 2477-2481. doi: 10.7498/aps.49.2477
计量
  • 文章访问数:  7321
  • PDF下载量:  154
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-01
  • 修回日期:  2016-11-03
  • 刊出日期:  2017-01-20

/

返回文章
返回
Baidu
map