搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电荷生成层中引入超薄金属Ag层对串联有机发光二极管性能的提升

陶洪 高栋雨 刘佰全 王磊 邹建华 徐苗 彭俊彪

引用本文:
Citation:

电荷生成层中引入超薄金属Ag层对串联有机发光二极管性能的提升

陶洪, 高栋雨, 刘佰全, 王磊, 邹建华, 徐苗, 彭俊彪

Enhancement of tandem organic light-emitting diode performance by inserting an ultra-thin Ag layer in charge generation layer

Tao Hong, Gao Dong-Yu, Liu Bai-Quan, Wang Lei, Zou Jian-Hua, Xu Miao, Peng Jun-Biao
PDF
导出引用
  • 为了获得高效、长寿命的白光有机发光二极管(white organic light-emitting diode,WOLED),一种方法是将不同颜色的发光单元通过电荷生成层(charge generation layer,CGL)串联起来获得白光,即串联WOLED.其中,CGL的选择与设计是高性能串联白光器件的关键.本文首先从绿光OLED着手,通过在CGL层中引入超薄的Ag金属层,获得了高效、长寿命的串联器件.引入超薄Ag金属层的绿光串联OLED的最大亮度达到了290000 cd/m2,分别是单层器件和无超薄Ag金属层器件的2.9倍与2.4倍;在1000 cd/m2下,引入超薄Ag金属层的器件电流效率达到了59.5 cd/A,相比于无超薄金属层的串联器件的58.7 cd/A,以及非串联的单层器件的17.1 cd/A,分别增加了1.4%与248%;同时,与无超薄层的串联器件相比,引入超薄Ag金属层的器件工作电压从8.6 V降为7.2 V;功率效率从21.5 lm/W上升为26 lm/W.特别地,在初始测试亮度为10000 cd/m2的条件下,包含超薄Ag金属层的串联器件的工作寿命T80超过了250 h,与无超薄层串联器件仅2.7 h寿命相比,提高近100倍.最后,我们使用优化后的CGL制备出高性能串联WOLED,在1000 cd/m2下,电流效率达到了75.9 cd/A,功率效率达到了36.1 lm/W,且10000 cd/m2的初始亮度下T80有77 h.这些优异的器件性能归结于超薄金属层的引入,抑制了Bphen:CsCO3与HAT-CN在界面处的相互扩散,同时也促进了载流子的生成与传输.这一结果为设计高效且稳定的WOLED提供了有效的思路.
    White organic light-emitting diodes (WOLEDs) have attracted both scientific and industrial interest in the solidstate lighting and display applications due to their exceptional merits,such as high luminances,low power consumptions, high efficiencies,fast response times,wide-viewing angles,flexibilities and simple fabrications.The power efficiency of WOLED has been step-by-step improved in the last 20 years,however,the lifetime of WOLED is still unsatisfactory, which greatly restricts the further development of WOLED.In general,the tandem structure can be used to obtain high-efficiency and long-lifetime WOLED.One of the most important features of this kind of structure is that the different-colors emitting units can be connected by the charge generation layer.Therefore,the key to achieving a highperformance tandem device is how to design the charge generation layer.In this paper,we first develop a tandem green OLED by using an effective charge generation layer with an ultra-thin Ag layer between 4,7-diphenyl-1,10-phenanthroline:CsCO3 and hexaazatriphenylenehexacabonitrile,achieving high luminance,low voltage,high efficiency and long lifetime.The green tandem device with ultra-thin Ag layer (device C) obtains a highest luminance of 290000 cd/m2,which is 1.4 and 1.9 times higher than those of the tandem devices without ultra-thin Ag (device B) and singleunit device (device A),respectively.The driving voltage of device C is 7.2 V at 1000 cd/m2,1.4 V lower than that of device B.Besides,the maximum current efficiency of device C is 60.4 cd/A,which is 2.4% and 220% higher than those of device B (59 cd/A) and device A (18.7 cd/A),respectively.The power efficiency of device C is 26 lm/W,which is 21% higher than that of device B (21.5 lm/W).Moreover,the lifetime (T80) of device C reaches 250 h at an initial luminance of 10000 cd/m2,which is nearly 100 times higher than that of device B (2.7 h).Finally,we fabricate a white tandem device with the optimized charge generation layer,achieving a current efficiency and power efficiency of 75.9 cd/A and 36.1 lm/W at 1000 cd/m2,respectively.In addition,the lifetime (T80) is 77 h at an initial luminance of 10000 cd/m2.All the excellent performances are ascribed to the introduction of the ultra-thin Ag layer into the charge generation layer, which can effectively block the charge generation layer from diffusing.This exciting discovery can provide an effective way to design efficient and stable WOLED,which is beneficial to the solid-state lighting and display markets.
      通信作者: 王磊, mslwang@scut.edu.cn;psjbpeng@scut.edu.cn ; 彭俊彪, mslwang@scut.edu.cn;psjbpeng@scut.edu.cn
    • 基金项目: 国家重点基础研究发展规划(批准号:2015CB655004)、国家自然科学基金(批准号:61574061,61574062)、广东省科技计划(批准号:2014B090916002,2015B090915001,2015B090914003)、广东省特支计划科技创新青年拔尖人才项目(批准号:2014TQ01C321)、中国博士后科研基金(批准号:2015M582380,2016M590779)和广州市珠江科技新星专项(批准号:201506010015,201505051412482)资助的课题.
      Corresponding author: Wang Lei, mslwang@scut.edu.cn;psjbpeng@scut.edu.cn ; Peng Jun-Biao, mslwang@scut.edu.cn;psjbpeng@scut.edu.cn
    • Funds: Project supported by the National Key Basic Research and Development Program of China(Grant No. 2015CB655004), National Natural Science Foundation of China(Grant Nos. 61574061, 61574062), Science and Technology Program of Guangdong Province, China(Grant Nos. 2014B090916002, 2015B090915001, 2015B090914003), Special Support Program of Guangdong Province, China(Grant No. 2014TQ01C321), China Post-Doctoral Science Foundation(Grant Nos. 2015M582380, 2016M590779) and Pear River ST Nova Program of Guangzhou, China(Grant Nos. 201506010015, 201505051412482).
    [1]

    Liu B Q, Gao D Y, Wang J B, Zou J H, Peng J B 2015 Acta Phys.-Chim. Sin. 31 1823(in Chinese)[刘佰全, 高栋雨, 王剑斌, 邹建华, 彭俊彪2015物理化学学报31 1823]

    [2]

    Liu B Q, Tao H, Su Y J, Gao D Y, Lan L F, Zou J H, Peng J B 2013 Chin. Phys. B 22 077303

    [3]

    Liu B Q, Luo D X, Zou J H, Gao D Y, Ning H L, Wang L, Peng J B, Cao Y 2015 J. Mater. Chem. C 3 6359

    [4]

    Nishimoto T, Yasuda T, Lee S Y, Kondo R, Adachi C 2014 Mater. Horiz. 1 264

    [5]

    Zhang D, Duan L, Zhang Y, Cai M, Zhang D, Qiu Y 2015 Light Sci. Appl. 4 232

    [6]

    Meyer J, Shu A, Kröger M, Kahn A 2010 Appl. Phys. Lett. 96 133308

    [7]

    Wang Q, Ma D G 2010 Chem. Soc. Rev. 39 2387

    [8]

    Kanno H, Giebink N C, Sun Y, Forrest S R 2006 Appl. Phys. Lett. 89 023503

    [9]

    Zhang H M, Dai Y F, Ma D G 2008 J. Phys. D:Appl. Phys. 41 102006

    [10]

    Chiba T, Pu Y J, Kido J 2015 Adv. Mater. 27 4681

    [11]

    Hofle S, Bernhard C, Bruns M, Kubel C, Scherer T, Lemmer U, Colsmann A 2015 ACS Appl. Mater. Interfaces 7 8132

    [12]

    Ran G Z, Jiang D F, Kan Q, Chen H D 2010 Appl. Phys. Lett. 97 233304

    [13]

    Chen Y H, Chen J S, Ma D G, Yan D H, Wang L X, Zhu F R 2011 Appl. Phys. Lett. 98 243309

    [14]

    Liu J, Shi X D, Wu X K, Wang J, He G F 2015 J. Disp. Technol. 11 4

    [15]

    Kanno H, Holmes R J, Sun Y, Kena-Cohen S, Forrest S R 2006 Adv. Mater. 18 339

    [16]

    Chen C W, Lu Y J, Wu C C, Wu E H, Yang Y 2005 Appl. Phys. Lett. 87 241121

    [17]

    Hamwi S, Meyer J, Kroger M, Winkler T, Witte M, Riedl T, Kahn A, Kowalsky W 2010 Adv. Funct. Mater. 20 1762

    [18]

    Zhou D Y, Shi X B, Liu Y, Gao C H, Wang K, Liao L S 2014 Org. Electron. 15 3694

    [19]

    Chen C W, Lu Y J, Wu C C, Wu E H, Chu C C, Yang Y 2005 Appl. Phys. Lett. 87 241121

    [20]

    Sun H D, Chen Y H, Chen J S, Ma D G 2016 IEEE J. Sel. Top. Quant. Electron. 22 1

    [21]

    Meyer J, Kroger M, Hamwi S, Gnam F, Riedl T, Kowalsky W, Kahn A 2010 Appl. Phys. Lett. 96 193302

    [22]

    Liao L S, Klubek K P, Tang C W 2004 Appl. Phys. Lett. 84 167

    [23]

    Leem D S, Lee J H, Kim J J, Kang J W 2008 Appl. Phys. Lett. 93 103304

    [24]

    Lee S H, Lee J H, Kim K H, Yoo S J, Kim T G, Kim J W, Kim J J 2012 Org. Electron. 13 2346

    [25]

    Kim D H, Kim T W 2014 Org. Electron. 15 3452

    [26]

    Qi X F, Slootsky M, Forrest S 2008 Appl. Phys. Lett. 93 193306

    [27]

    Liao L S, Klubek K P 2008 Appl. Phys. Lett. 92 223311

    [28]

    Law C W, Lau K M, Fung M K, Chan M Y, Wong F L, Lee C S, Lee S T 2006 Appl. Phys. Lett. 89 133511

    [29]

    Wang Y P, Mi B X, Gao Z Q, Guo Q, Wang W 2011 Acta Phys. Sin. 60 087808 (in Chinese)[王旭鹏, 密保秀, 高志强, 郭晴, 黄维2011 60 087808]

    [30]

    Zhou D Y, Zu F S, Zhang Y J, Shi X B, Aziz H, Liao L S 2014 Appl. Phys. Lett. 105 083301

    [31]

    Sun H D, Guo Q X, Yang D Z, Chen Y H, Chen J S, Ma D G 2015 ACS Photon. 2 271

    [32]

    Zhao Y B, Tan S T, Demir H V, Sun X W 2015 Org. Electron. 23 70

    [33]

    Diez C, Reusch T C G, Lang E, Dobbertin T, Brtting W 2012 J. Appl. Phys. 111 103107

    [34]

    Zhou D Y, Siboni H Z, Wang Q, Liao L S, Aziz H 2014 J. Appl. Phys. 116 223708

    [35]

    Yu J N, Lin H, Tong L, Li C, Zhang H, Zhang J H, Wang Z X, Wei B 2013 Phys. Status Solidi A 210 408

    [36]

    Liu B Q, Xu M, Wang L, Tao H, Su Y J, Gao D Y, Lan L F, Zou J H, Peng J B 2014 Nano-Micro Lett. 6 335

    [37]

    Liu B Q, Xu M, Tao H, Su Y J, Gao D Y, Zou J H, Lan L F, Peng J B 2014 Chin. Sci. Bull. 59 3090

    [38]

    Liu B Q, Wang L, Gao D Y, Xu M, Zhu X H, Zou J H, Lan L F, Ning H L, Peng J B, Cao Y 2015 Mater. Horiz. 2 536

    [39]

    Fan C, Yang C, Chem 2014 Soc. Rev. 43 6439

    [40]

    Yang X, Zhou G, Wong W Y 2015 Chem. Soc. Rev. 44 8484

  • [1]

    Liu B Q, Gao D Y, Wang J B, Zou J H, Peng J B 2015 Acta Phys.-Chim. Sin. 31 1823(in Chinese)[刘佰全, 高栋雨, 王剑斌, 邹建华, 彭俊彪2015物理化学学报31 1823]

    [2]

    Liu B Q, Tao H, Su Y J, Gao D Y, Lan L F, Zou J H, Peng J B 2013 Chin. Phys. B 22 077303

    [3]

    Liu B Q, Luo D X, Zou J H, Gao D Y, Ning H L, Wang L, Peng J B, Cao Y 2015 J. Mater. Chem. C 3 6359

    [4]

    Nishimoto T, Yasuda T, Lee S Y, Kondo R, Adachi C 2014 Mater. Horiz. 1 264

    [5]

    Zhang D, Duan L, Zhang Y, Cai M, Zhang D, Qiu Y 2015 Light Sci. Appl. 4 232

    [6]

    Meyer J, Shu A, Kröger M, Kahn A 2010 Appl. Phys. Lett. 96 133308

    [7]

    Wang Q, Ma D G 2010 Chem. Soc. Rev. 39 2387

    [8]

    Kanno H, Giebink N C, Sun Y, Forrest S R 2006 Appl. Phys. Lett. 89 023503

    [9]

    Zhang H M, Dai Y F, Ma D G 2008 J. Phys. D:Appl. Phys. 41 102006

    [10]

    Chiba T, Pu Y J, Kido J 2015 Adv. Mater. 27 4681

    [11]

    Hofle S, Bernhard C, Bruns M, Kubel C, Scherer T, Lemmer U, Colsmann A 2015 ACS Appl. Mater. Interfaces 7 8132

    [12]

    Ran G Z, Jiang D F, Kan Q, Chen H D 2010 Appl. Phys. Lett. 97 233304

    [13]

    Chen Y H, Chen J S, Ma D G, Yan D H, Wang L X, Zhu F R 2011 Appl. Phys. Lett. 98 243309

    [14]

    Liu J, Shi X D, Wu X K, Wang J, He G F 2015 J. Disp. Technol. 11 4

    [15]

    Kanno H, Holmes R J, Sun Y, Kena-Cohen S, Forrest S R 2006 Adv. Mater. 18 339

    [16]

    Chen C W, Lu Y J, Wu C C, Wu E H, Yang Y 2005 Appl. Phys. Lett. 87 241121

    [17]

    Hamwi S, Meyer J, Kroger M, Winkler T, Witte M, Riedl T, Kahn A, Kowalsky W 2010 Adv. Funct. Mater. 20 1762

    [18]

    Zhou D Y, Shi X B, Liu Y, Gao C H, Wang K, Liao L S 2014 Org. Electron. 15 3694

    [19]

    Chen C W, Lu Y J, Wu C C, Wu E H, Chu C C, Yang Y 2005 Appl. Phys. Lett. 87 241121

    [20]

    Sun H D, Chen Y H, Chen J S, Ma D G 2016 IEEE J. Sel. Top. Quant. Electron. 22 1

    [21]

    Meyer J, Kroger M, Hamwi S, Gnam F, Riedl T, Kowalsky W, Kahn A 2010 Appl. Phys. Lett. 96 193302

    [22]

    Liao L S, Klubek K P, Tang C W 2004 Appl. Phys. Lett. 84 167

    [23]

    Leem D S, Lee J H, Kim J J, Kang J W 2008 Appl. Phys. Lett. 93 103304

    [24]

    Lee S H, Lee J H, Kim K H, Yoo S J, Kim T G, Kim J W, Kim J J 2012 Org. Electron. 13 2346

    [25]

    Kim D H, Kim T W 2014 Org. Electron. 15 3452

    [26]

    Qi X F, Slootsky M, Forrest S 2008 Appl. Phys. Lett. 93 193306

    [27]

    Liao L S, Klubek K P 2008 Appl. Phys. Lett. 92 223311

    [28]

    Law C W, Lau K M, Fung M K, Chan M Y, Wong F L, Lee C S, Lee S T 2006 Appl. Phys. Lett. 89 133511

    [29]

    Wang Y P, Mi B X, Gao Z Q, Guo Q, Wang W 2011 Acta Phys. Sin. 60 087808 (in Chinese)[王旭鹏, 密保秀, 高志强, 郭晴, 黄维2011 60 087808]

    [30]

    Zhou D Y, Zu F S, Zhang Y J, Shi X B, Aziz H, Liao L S 2014 Appl. Phys. Lett. 105 083301

    [31]

    Sun H D, Guo Q X, Yang D Z, Chen Y H, Chen J S, Ma D G 2015 ACS Photon. 2 271

    [32]

    Zhao Y B, Tan S T, Demir H V, Sun X W 2015 Org. Electron. 23 70

    [33]

    Diez C, Reusch T C G, Lang E, Dobbertin T, Brtting W 2012 J. Appl. Phys. 111 103107

    [34]

    Zhou D Y, Siboni H Z, Wang Q, Liao L S, Aziz H 2014 J. Appl. Phys. 116 223708

    [35]

    Yu J N, Lin H, Tong L, Li C, Zhang H, Zhang J H, Wang Z X, Wei B 2013 Phys. Status Solidi A 210 408

    [36]

    Liu B Q, Xu M, Wang L, Tao H, Su Y J, Gao D Y, Lan L F, Zou J H, Peng J B 2014 Nano-Micro Lett. 6 335

    [37]

    Liu B Q, Xu M, Tao H, Su Y J, Gao D Y, Zou J H, Lan L F, Peng J B 2014 Chin. Sci. Bull. 59 3090

    [38]

    Liu B Q, Wang L, Gao D Y, Xu M, Zhu X H, Zou J H, Lan L F, Ning H L, Peng J B, Cao Y 2015 Mater. Horiz. 2 536

    [39]

    Fan C, Yang C, Chem 2014 Soc. Rev. 43 6439

    [40]

    Yang X, Zhou G, Wong W Y 2015 Chem. Soc. Rev. 44 8484

  • [1] 徐冲, 牛连斌, 钱雅翠, 文林, 熊元强, 彭浩南, 关云霞. Fe(NH2trz)3·(BF4)2掺杂聚芴的有机电致发光器件.  , 2021, 70(7): 077202. doi: 10.7498/aps.70.20201444
    [2] 漆世锴, 王小霞, 王兴起, 胡明玮, 刘理, 曾伟. 大功率磁控管用新型Y2Hf2O7陶瓷阴极研究.  , 2020, 69(3): 037901. doi: 10.7498/aps.69.20191496
    [3] 郝广辉, 韩攀阳, 李兴辉, 李泽鹏, 高玉娟. 真空沟道结构GaAs光电阴极电子发射特性.  , 2020, 69(10): 108501. doi: 10.7498/aps.69.20191893
    [4] 白旭芳, 陈磊, 额尔敦朝鲁. 电磁场中施主中心量子点内磁极化子态寿命与qubit退相干.  , 2020, 69(14): 147802. doi: 10.7498/aps.69.20200242
    [5] 张娟, 焦志强, 闫华杰, 陈福栋, 黄清雨, 康亮亮, 刘晓云, 王路, 袁广才. 微腔效应对顶发射串联蓝光有机电致发光器件性能的影响.  , 2020, 69(9): 096104. doi: 10.7498/aps.69.20191576
    [6] 马莉, 沈光地, 陈依新, 蒋文静, 郭伟玲, 徐晨, 高志远. 新型AlGaInP系发光二极管饱和特性与寿命的研究.  , 2014, 63(3): 037201. doi: 10.7498/aps.63.037201
    [7] 张新稳, 胡琦. 有机电致发光器件的稳定性.  , 2012, 61(20): 207802. doi: 10.7498/aps.61.207802
    [8] 冯志刚, 张好, 张临杰, 李昌勇, 赵建明, 贾锁堂. 超冷铯Rydberg原子寿命的测量.  , 2011, 60(7): 073202. doi: 10.7498/aps.60.073202
    [9] 陈平, 赵理, 段羽, 程刚, 赵毅, 刘式墉. 一种用于堆叠结构有机发光二极管的新的电荷生成层.  , 2011, 60(9): 097203. doi: 10.7498/aps.60.097203
    [10] 乔士柱, 赵俊卿, 贾振锋, 张宁玉, 王凤翔, 付刚, 季燕菊. 自旋极化有机电致发光器件中单线态与三线态激子的形成及调控.  , 2010, 59(5): 3564-3570. doi: 10.7498/aps.59.3564
    [11] 陈依新, 沈光地, 韩金茹, 李建军, 郭伟玲. 不同表面结构的半导体发光二极管的效率与寿命的研究.  , 2010, 59(1): 545-549. doi: 10.7498/aps.59.545
    [12] 熊涛, 高传波, 陈祥磊, 周先意, 翁惠民, 曹方宇, 叶邦角, 韩荣典, 杜淮江. Fe3O4-C核壳型纳米纤维的正电子研究.  , 2009, 58(10): 6946-6950. doi: 10.7498/aps.58.6946
    [13] 王小霞, 廖显恒, 罗积润, 赵青兰, 张晓伟. 新型贮存式氧化物阴极寿命机理的初步探讨.  , 2009, 58(2): 1280-1286. doi: 10.7498/aps.58.1280
    [14] 师应龙, 董晨钟. C Ⅱ离子1s内壳层激发态的结构和衰变特性的理论研究.  , 2009, 58(4): 2350-2357. doi: 10.7498/aps.58.2350
    [15] 文雯, 王博, 李璐, 于军胜, 蒋亚东. 基于红色荧光染料3-(dicyanomethylene)-5, 5-dimethyl-1-(4-dimethylamino-styryl) cyclohexene的高性能白色有机电致发光器件.  , 2009, 58(11): 8014-8020. doi: 10.7498/aps.58.8014
    [16] 牛连斌, 关云霞. 富勒烯掺杂NPB空穴传输层的有机电致发光器件.  , 2009, 58(7): 4931-4935. doi: 10.7498/aps.58.4931
    [17] 唐晓庆, 于军胜, 李 璐, 王 军, 蒋亚东. 铱金属配合物磷光材料掺杂聚合物体系的电致发光特性.  , 2008, 57(10): 6620-6626. doi: 10.7498/aps.57.6620
    [18] 廖健飞, 夏光琼, 吴加贵, 许 黎, 吴正茂. 基于光电负反馈的激光混沌串联同步系统研究.  , 2007, 56(11): 6301-6306. doi: 10.7498/aps.56.6301
    [19] 杨少鹏, 郑红芳, 李春雷, 傅广生, 李晓苇, 许春华, 李金培. 纳米硫化镍增感的溴化银微晶中光电子衰减特性研究.  , 2006, 55(5): 2144-2148. doi: 10.7498/aps.55.2144
    [20] 鲁 欣, 奚婷婷, 李英竣, 张 杰. 超短超强脉冲激光在空气中产生的电离通道的寿命研究.  , 2004, 53(10): 3404-3408. doi: 10.7498/aps.53.3404
计量
  • 文章访问数:  7305
  • PDF下载量:  390
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-12
  • 修回日期:  2016-10-14
  • 刊出日期:  2017-01-05

/

返回文章
返回
Baidu
map