搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米SiO2/环氧树脂复合材料介电性与纳米粒子分散性关系

高铭泽 张沛红

引用本文:
Citation:

纳米SiO2/环氧树脂复合材料介电性与纳米粒子分散性关系

高铭泽, 张沛红

Relationship between dielectric properties and nanoparticle dispersion of nano-SiO2/epoxy composite

Gao Ming-Ze, Zhang Pei-Hong
PDF
导出引用
  • 利用硅烷偶联剂改性纳米SiO2,制得改性纳米SiO2分散液和改性纳米SiO2颗粒.分别利用机械法和气泡法制备纳米SiO2含量为2 wt%,3 wt%,4 wt%,5 wt%和6 wt%的未改性纳米SiO2复合环氧树脂和改性纳米SiO2复合环氧树脂,测试了复合环氧树脂的击穿特性和耐电晕特性.测试结果表明,复合环氧树脂的击穿场强和耐电晕性随纳米SiO2含量的增加而增加,击穿场强在5 wt%纳米SiO2含量时达到最大值,气泡法制备的改性纳米SiO2复合环氧树脂的击穿场强和耐电晕性优于所制备的其他复合环氧树脂.以5 wt%纳米SiO2含量复合环氧树脂为例,通过森下氏分散指数(Morisita's index)方法对复合环氧树脂中纳米SiO2的分散性进行定量表征,得出气泡法制得的纳米SiO2/环氧树脂复合材料的分散性优于机械法制备的复合材料.研究发现纳米SiO2在环氧树脂基体中分散性越好,复合材料的击穿特性和耐电晕性越好.
    Polymer nanocomposites have advantage over traditional materials in electrical properties from the standpoint of dielectrics and electrical insulation. The influences of nanoparticle dispersion in the matrix, which is mainly caused by different preparation methods, on the dielectric properties of composites have been given in the past work. In order to investigate the relationship between the dispersion of nanoparticles in the matrix and the dielectric properties of composites, nano-SiO2/epoxy composites are prepared by different methods. Nano-SiO2 is first modified by silane coupling agent to obtain nano-SiO2 powder and nano-SiO2 dispersing liquid, then unmodified and modified nano-SiO2 powder are mixed into epoxy by mechanical mixing method, and the modified nano-SiO2 dispersing liquid is mixed into epoxy by bubble mixing method to prepare nano-SiO2/epoxy composites. The amounts of nano-SiO2 content in the composites are 2 wt%, 3 wt%, 4 wt%, 5 wt% and 6 wt%, respectively. Breakdown strength and corona-resistance characteristics of the composites are tested. The results show that with the increase of the nano-SiO2 content, the breakdown strength and corona-resistance of nano-SiO2/epoxy composites increase. The maximal breakdown strength appears in the composites with 5 wt% nano-SiO2. This appearance accords with percolation theory. The composites prepared by bubble mixing method have better breakdown strengths and corona-resistances than the composites prepared by mechanical mixing method. The scanning electron microscope images of the nano-SiO2/epoxy composites are analyzed by Image J software to obtain the information about the nanoparticle number in the special grid. Morisita's index is used to characterize the dispersion of nano-SiO2 in the matrix quantitatively. It is concluded that the composites prepared by bubble mixing method have better dispersion than those prepared by mechanical mixing method. Compared with the unmodified nano-SiO2, modified one has good dispersion in the composite because of the improved compatibility between the nanoparticles and the matrix. Based on the role that nano-SiO2 particles block discharge from developing in the composite, the better dispersion means that there are more nanoparticles and more barriers on the discharge path. Meanwhile, the better dispersion also means that more interface areas form between nano-SiO2 and matrix. The shallower traps supplied by the interface area will contribute less energy when current carriers jump into and out off the traps. So the better the dispersion of nano-SiO2 in the matrix, the superior the breakdown strength and corona-resistance of the composites are.
      通信作者: 张沛红, zph@hrbust.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51277044)资助的课题.
      Corresponding author: Zhang Pei-Hong, zph@hrbust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51277044).
    [1]

    Kurimoto M, Okubo H, Kato K, Hanai M, Hoshina Y, Takei M, Hayakawa N 2010 IEEE Trans. Dielectr. Electr. Insul. 17 662

    [2]

    Tanaka T 2005 IEEE Trans. Dielectr. Electr. Insul. 12 914

    [3]

    Fuse N, Sato H, Ohki Y, Tanaka T 2009 IEEE Trans. Dielectr. Electr. Insul. 16 524

    [4]

    Fuse N, Ohki Y, Kozako M, Tanaka T 2008 IEEE Trans. Dielectr. Electr. Insul. 15 161

    [5]

    Ru J S, Min D M, Zhang C, Li S T, Xing Z L, Li G C 2016 Acta Phys. Sin. 65 047701 (in Chinese)[茹佳胜, 闵道敏, 张翀, 李盛涛, 邢照亮, 李国倡2016 65 047701]

    [6]

    Green C, Vaughan A 2008 IEEE Electr. Insul. Mag. 24 6

    [7]

    Montanari G C 2011 IEEE Trans. Dielectr. Electr. Insul. 18 339

    [8]

    Zhou L R, Wu G N, Gao B, Chao K J 2009 Trans. China Electrotech. Soc. 24 6 (in Chinese)[周力任, 吴广宁, 高波, 曹开江2009电工技术学报 24 6]

    [9]

    Masuda S, Okuzumi S, Kurniant R, Murakami Y, Nagao M, Murata Y, Sekiguchi Y 2007 IEEE Annual Report Conference on Electrical Insulation and Dielectric Phenomena Vancouver, Canada, October 14-17, 2007 p290

    [10]

    Chen G, Zhang C, Stevens G 2007 IEEE Annual Report Conference on Electrical Insulation and Dielectric Phenomena Vancouver, Canada, October 14-17, 2007 p275

    [11]

    Calebrese C, Hui L, Schadler L S, Nelson J K 2011 IEEE Trans. Dielectr. Electr. Insul. 18 938

    [12]

    Murakami Y, Nemoto M, Okuzumi S, Masuda S, Nagao M, Hozumi N, Sekiguchi Y, Murata Y 2008 IEEE Trans. Dielectr. Electr. Insul. 15 33

    [13]

    Singha S, Thomas M J 2008 IEEE Trans. Dielectr. Electr. Insul. 15 12

    [14]

    Li W, Hillborg H, Gedde U W 2015 IEEE Trans. Dielectr. Electr. Insul. 22 3536

    [15]

    Iyer G, Gorurl R S, Krivda A 2008 IEEE Trans. Dielectr. Electr. Insul. 19 1070

    [16]

    Kim D, Lee J S, Barry C M F, Mead J 2007 Microsc. Res. Techniq. 70 539

    [17]

    Leggoe J 2005 Scripta Mater. 53 1263

    [18]

    Burnis D L, Boesl B, Bourne G R, Sawyer W G 2007 Macromol. Mater. Eng. 292 387

    [19]

    Hui L, Smith R C, Wang X, Nelson J K, Schadler L S 2008 IEEE Annual Report Conference on Electrical Insulation and Dielectric Phenomena Quebec, Canada, October 26-29, 2008 p317

    [20]

    Gao M Z 2014 M. S. Dissertation (Harbin:Harbin University of Science and Technology) (in Chinese)[高铭泽2014硕士学位论文(哈尔滨:哈尔滨理工大学)]

    [21]

    Wu Q H 2006 Progress in Condensed Matter Physics (Shanghai:East hina University of Science and Technology Press) p247(in Chinese)[吴其晔2006高分子凝聚态物理及其进展(上海:华东理工大学出版社)第247页]

    [22]

    Preetha P, Thomas M J 2011 IEEE Trans. Dielectr. Electr. Insul. 18 1526

    [23]

    Lewis T J 2004 IEEE Trans. Dielectr. Electr. Insul. 11 739

    [24]

    Luo Y, Wu G N, Peng J, Zhang Y Q, Xu H H, Wang P 2012 High Voltage Engineering 38 2455 (in Chinese)[罗杨, 吴广宁, 彭佳, 张依强, 徐慧慧, 王鹏2012高电压技术 38 2455]

    [25]

    Morisita M 1959 Measuring of the Dispersion and Analysis of Distribution Patterns (Kyushu:Kyushu University Press) p215

    [26]

    Li Y C 2005 M. S. Dissertation (Beijing:Beijing University of Chemical Technology) (in Chinese)[李艳臣2005硕士学位论文(北京:北京化工大学)]

    [27]

    Preetha P, Thomas M J 2011 IEEE Trans. Dielectr. Electr. Insul. 18 264

    [28]

    Tanaka T, Kozako M, Fuse N, Ohki Y 2005 IEEE Trans. Dielectr. Electr. Insul. 12 669

    [29]

    Zhang P H 2006 Ph. D. Dissertation (Harbin:Harbin University of Science and Technology) (in Chinese)[张沛红2006博士学位论文(哈尔滨:哈尔滨理工大学)]

  • [1]

    Kurimoto M, Okubo H, Kato K, Hanai M, Hoshina Y, Takei M, Hayakawa N 2010 IEEE Trans. Dielectr. Electr. Insul. 17 662

    [2]

    Tanaka T 2005 IEEE Trans. Dielectr. Electr. Insul. 12 914

    [3]

    Fuse N, Sato H, Ohki Y, Tanaka T 2009 IEEE Trans. Dielectr. Electr. Insul. 16 524

    [4]

    Fuse N, Ohki Y, Kozako M, Tanaka T 2008 IEEE Trans. Dielectr. Electr. Insul. 15 161

    [5]

    Ru J S, Min D M, Zhang C, Li S T, Xing Z L, Li G C 2016 Acta Phys. Sin. 65 047701 (in Chinese)[茹佳胜, 闵道敏, 张翀, 李盛涛, 邢照亮, 李国倡2016 65 047701]

    [6]

    Green C, Vaughan A 2008 IEEE Electr. Insul. Mag. 24 6

    [7]

    Montanari G C 2011 IEEE Trans. Dielectr. Electr. Insul. 18 339

    [8]

    Zhou L R, Wu G N, Gao B, Chao K J 2009 Trans. China Electrotech. Soc. 24 6 (in Chinese)[周力任, 吴广宁, 高波, 曹开江2009电工技术学报 24 6]

    [9]

    Masuda S, Okuzumi S, Kurniant R, Murakami Y, Nagao M, Murata Y, Sekiguchi Y 2007 IEEE Annual Report Conference on Electrical Insulation and Dielectric Phenomena Vancouver, Canada, October 14-17, 2007 p290

    [10]

    Chen G, Zhang C, Stevens G 2007 IEEE Annual Report Conference on Electrical Insulation and Dielectric Phenomena Vancouver, Canada, October 14-17, 2007 p275

    [11]

    Calebrese C, Hui L, Schadler L S, Nelson J K 2011 IEEE Trans. Dielectr. Electr. Insul. 18 938

    [12]

    Murakami Y, Nemoto M, Okuzumi S, Masuda S, Nagao M, Hozumi N, Sekiguchi Y, Murata Y 2008 IEEE Trans. Dielectr. Electr. Insul. 15 33

    [13]

    Singha S, Thomas M J 2008 IEEE Trans. Dielectr. Electr. Insul. 15 12

    [14]

    Li W, Hillborg H, Gedde U W 2015 IEEE Trans. Dielectr. Electr. Insul. 22 3536

    [15]

    Iyer G, Gorurl R S, Krivda A 2008 IEEE Trans. Dielectr. Electr. Insul. 19 1070

    [16]

    Kim D, Lee J S, Barry C M F, Mead J 2007 Microsc. Res. Techniq. 70 539

    [17]

    Leggoe J 2005 Scripta Mater. 53 1263

    [18]

    Burnis D L, Boesl B, Bourne G R, Sawyer W G 2007 Macromol. Mater. Eng. 292 387

    [19]

    Hui L, Smith R C, Wang X, Nelson J K, Schadler L S 2008 IEEE Annual Report Conference on Electrical Insulation and Dielectric Phenomena Quebec, Canada, October 26-29, 2008 p317

    [20]

    Gao M Z 2014 M. S. Dissertation (Harbin:Harbin University of Science and Technology) (in Chinese)[高铭泽2014硕士学位论文(哈尔滨:哈尔滨理工大学)]

    [21]

    Wu Q H 2006 Progress in Condensed Matter Physics (Shanghai:East hina University of Science and Technology Press) p247(in Chinese)[吴其晔2006高分子凝聚态物理及其进展(上海:华东理工大学出版社)第247页]

    [22]

    Preetha P, Thomas M J 2011 IEEE Trans. Dielectr. Electr. Insul. 18 1526

    [23]

    Lewis T J 2004 IEEE Trans. Dielectr. Electr. Insul. 11 739

    [24]

    Luo Y, Wu G N, Peng J, Zhang Y Q, Xu H H, Wang P 2012 High Voltage Engineering 38 2455 (in Chinese)[罗杨, 吴广宁, 彭佳, 张依强, 徐慧慧, 王鹏2012高电压技术 38 2455]

    [25]

    Morisita M 1959 Measuring of the Dispersion and Analysis of Distribution Patterns (Kyushu:Kyushu University Press) p215

    [26]

    Li Y C 2005 M. S. Dissertation (Beijing:Beijing University of Chemical Technology) (in Chinese)[李艳臣2005硕士学位论文(北京:北京化工大学)]

    [27]

    Preetha P, Thomas M J 2011 IEEE Trans. Dielectr. Electr. Insul. 18 264

    [28]

    Tanaka T, Kozako M, Fuse N, Ohki Y 2005 IEEE Trans. Dielectr. Electr. Insul. 12 669

    [29]

    Zhang P H 2006 Ph. D. Dissertation (Harbin:Harbin University of Science and Technology) (in Chinese)[张沛红2006博士学位论文(哈尔滨:哈尔滨理工大学)]

  • [1] 刘秀成, 杨智, 郭浩, 陈颖, 罗向龙, 陈健勇. 金刚石/环氧树脂复合物热导率的分子动力学模拟.  , 2023, 72(16): 168102. doi: 10.7498/aps.72.20222270
    [2] 刘曰利, 赵思杰, 陈文, 周静. SiO2/聚四氟乙烯复合介质材料热性能和介电性能的数值模拟.  , 2022, 71(21): 210201. doi: 10.7498/aps.71.20220839
    [3] 王逸飞, 李晓薇. 石墨烯/BiOI纳米复合物电子结构和光学性质的第一性原理模拟计算.  , 2018, 67(11): 116301. doi: 10.7498/aps.67.20172220
    [4] 王雅静, 李桂霞, 王治华, 宫立基, 王秀芳. Imogolite类纳米管直径单分散性密度泛函理论研究.  , 2016, 65(4): 048101. doi: 10.7498/aps.65.048101
    [5] 郭各朴, 张春兵, 屠娟, 章东. 超声造影剂微气泡的包膜黏弹特性的定量表征研究.  , 2015, 64(11): 114301. doi: 10.7498/aps.64.114301
    [6] 李一亨, 王靖, 胡巍, 郭旗. 负性介电各向异性向列相液晶中空间光孤子的理论研究.  , 2014, 63(18): 184207. doi: 10.7498/aps.63.184207
    [7] 周鹏力, 郑树凯, 田言, 张朔铭, 史茹倩, 何静芳, 闫小兵. Al-N共掺杂3C-SiC介电性质的第一性原理计算.  , 2014, 63(5): 053102. doi: 10.7498/aps.63.053102
    [8] 甘永超, 曹万强. 铁电相变中极化与介电性的随机场效应.  , 2013, 62(12): 127701. doi: 10.7498/aps.62.127701
    [9] 李智敏, 施建章, 卫晓黑, 李培咸, 黄云霞, 李桂芳, 郝跃. 掺铝3C-SiC电子结构的第一性原理计算及其微波介电性能.  , 2012, 61(23): 237103. doi: 10.7498/aps.61.237103
    [10] 李忠虎, 李林, 祁阳. BaCoxZn2-xFe16O27六角铁氧体电子结构与介电特性的第一性原理研究.  , 2012, 61(20): 207102. doi: 10.7498/aps.61.207102
    [11] 李雪梅, 韩会磊, 何光普. LiNH2 的晶格动力学、介电性质和热力学性质第一性原理研究.  , 2011, 60(8): 087104. doi: 10.7498/aps.60.087104
    [12] 黄云霞, 曹全喜, 李智敏, 李桂芳, 王毓鹏, 卫云鸽. Al掺杂ZnO粉体的第一性原理计算及微波介电性质.  , 2009, 58(11): 8002-8007. doi: 10.7498/aps.58.8002
    [13] 王巧占, 于润升, 秦秀波, 李玉晓, 王宝义, 贾全杰. 介孔SiO2薄膜孔结构的慢正电子技术表征.  , 2009, 58(12): 8478-8483. doi: 10.7498/aps.58.8478
    [14] 徐 灿, 曹 娟, 高晨阳. 第一性原理研究一维SiO2纳米材料的结构和性质.  , 2006, 55(8): 4221-4225. doi: 10.7498/aps.55.4221
    [15] 汪 渊, 白宣羽, 徐可为. 基于小波变换Cu-W薄膜表面形貌表征与硬度值分散性评价.  , 2004, 53(7): 2281-2286. doi: 10.7498/aps.53.2281
    [16] 李正法, 钟维烈, 裘忠平, 葛洪良, 张沛霖, 王春雷. 钛酸铋钡陶瓷的介电性、铁电性及对晶格结构的依赖性.  , 2004, 53(9): 3200-3204. doi: 10.7498/aps.53.3200
    [17] 张逸新, 许 强. 光学与粒径耦合多分散性的动态光散射研究.  , 1999, 48(4): 735-743. doi: 10.7498/aps.48.735
    [18] 唐超群, 喻力华. La掺杂BaTiO3陶瓷的介电性与缺陷.  , 1996, 45(7): 1220-1224. doi: 10.7498/aps.45.1220
    [19] 钟维烈, 张沛霖, 赵焕绥, 陈焕矗, 陈福生, 宋永远. 铌酸锂钠在低温时的介电铁电和热电性.  , 1988, 37(11): 1837-1842. doi: 10.7498/aps.37.1837
    [20] 陈立泉, 赵宗源, 王超英, 李子荣. 分散第二相γ-Al2O3对β-Li2SO4离子导电性的影响.  , 1985, 34(8): 1027-1033. doi: 10.7498/aps.34.1027
计量
  • 文章访问数:  6714
  • PDF下载量:  354
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-29
  • 修回日期:  2016-09-11
  • 刊出日期:  2016-12-05

/

返回文章
返回
Baidu
map