搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

温度、缺陷对磁畴壁动力学行为的影响

朱金荣 范吕超 苏垣昌 胡经国

引用本文:
Citation:

温度、缺陷对磁畴壁动力学行为的影响

朱金荣, 范吕超, 苏垣昌, 胡经国

Influences of material defects and temperature on current-driven domain wall mobility

Zhu Jin-Rong, Fan Lü-Chao, Chao Su, Hu Jing-Guo
PDF
导出引用
  • 基于Landau-Lifshitz-Gilbert自旋动力学方法,研究了磁纳米条中缺陷、温度对其电流驱动磁畴壁移动性质的影响.研究结果表明:缺陷能有效钉扎电流对磁畴壁的驱动作用,并且其钉扎能力依赖于其缺陷浓度、位置及形态.而温度能有效地去钉扎.特别地,缺陷处的焦耳热能有效地消除其缺陷对磁畴壁的钉扎作用.进一步的研究表明:其影响磁畴壁移动的缘由在于缺陷、温度能有效调节磁纳米条中磁畴壁的面外磁化强度.
    Current-induced domain wall motion, which has potential application in the next-generation data storage and logic device, has attracted much interest in recent years. However, how the material defect and its joule heat influence current-driven domain wall motion in magnetic nanostripe is still unclear. This paper is to deal with these issues by using the Landau-Lifshitz-Gilbert spin dynamics. The results show that the material defect can pin domain wall motion and this pinning effect strongly depends on the defect concentration, location and shape. The pinning effect induced by the defect on domain wall motion results in the increase of threshold current, and the domain wall moves steadily and continuously. Specifically, the probability for domain wall motion induced by pinning effect is nonlinearly increasing with the increase of defect concentration. Namely, the increasing of the pinning ability with the increase of the defect concentration becomes fades away. Initially, when the defect is near to domain wall, the pinning ability is obvious. However, the pinning ability is not linearly increasing with the decrease of the initial distance between the defect and the domain wall. The results also show that the single defect is larger, the probability for domain wall motion induced by defect pining is bigger. Moreover, the material defect can suppress the domain wall trending toward breakdown and make domain wall move faster, but the suppressing ability is not obviously increasing with the increase of the defect concentration. On the other hand, the temperature field can remove the pinning phenomenon, which will result in the threshold current decrease. The decrease of the threshold current is of benefit to the working of the data storage and logic device. Also the temperature field can suppress the domain wall trending toward breakdown, but the suppressing ability is less than that of the defect. In addition, the Joule heat around defects can obviously eliminate the pinning effect of the defects, so the pinning effect for a few defects on current-induced domain wall motion can be ignored. Further analysis indicates that these effects are due to the change of the out-of-plane magnetization of the domain wall induced by the material defects and the temperature field, because the velocity of the domain wall motion induced by the applied current greatly depends on the out-of-plane magnetization of the domain wall.
      通信作者: 苏垣昌, ycsu@yzu.edu.cn;jghu@yzu.edu.cn ; 胡经国, ycsu@yzu.edu.cn;jghu@yzu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11374253)和江苏省高校自然科学研究基金(批准号:16KJB140018)资助的课题.
      Corresponding author: Chao Su, ycsu@yzu.edu.cn;jghu@yzu.edu.cn ; Hu Jing-Guo, ycsu@yzu.edu.cn;jghu@yzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11374253) and the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province, China (Grant No. 16KJB140018).
    [1]

    Parkin S S P, Hayashi M, Thomas L 2008 Science 320 190

    [2]

    Allwood D A, Xiong G, Faulkner C C, Atkinson D, Petit D, Cowburn R P 2005 Science 309 2008

    [3]

    Ito M, Ooba A, Komine T, Sugita R 2013 J. Magn. Magn. Mater. 340 61

    [4]

    Komine T, Takahashi K, Ooba A, Sugita R 2011 J. Appl. Phys. 109 07D503

    [5]

    Roy P E, Wunderlich J 2011 Appl. Phys. Lett. 99 122504

    [6]

    Heyne L, Rhensius J, Bisig A, Krzyk S, Punke P 2010 Appl. Phys. Lett. 96 032504

    [7]

    Heinen J, Boulle O, Rousseau K, Malinowski G, Klöui M 2010 Appl. Phys. Lett. 96 202510

    [8]

    Curiale J, Lemaitre A, Ulysse C, Faini G, Jeudy V 2012 Phys. Rev. Lett. 108 076604

    [9]

    Torrejon J, Malinowski G, Pelloux M, Weil R, Thiaville A, Curiale J, Lacour D, Montaigne F, Hehn M 2012 Phys. Rev. Lett. 109 106601

    [10]

    Su Y, Sun J, Hu J, Lei H 2013 Europhys. Lett. 103 67004

    [11]

    Curiale J, Lemaitre A, Niazi T, Faini G, Jeudy V 2012 J. Appl. Phys. 112 103922

    [12]

    Glathe S, Mattheis R, Berkov D V 2008 Appl. Phys. Lett. 93 072508

    [13]

    Schryer N L, Walker L R 1974 J. Appl. Phys. 45 5406

    [14]

    Yan M, Kákay A, Gliga S, Hertel R 2010 Phys. Rev. Lett. 104 057201

    [15]

    Lee J Y, Lee K S, Kim S K 2007 Appl. Phys. Lett. 91 122513

    [16]

    Kruger B, Kim D H, Fischer P 2007 Phys. Rev. Lett. 98 187202

    [17]

    Ueda K, Koyama T, Chiba D, Shimamura K, Tanigawa H, Fukami S, Suzuki T, Ohshima N, Ishiwata N, Nakatani Y 2011 Appl. Phys. Express 4 063003

    [18]

    Akerman J, Muöoz M, Maicas M, Prieto J L 2010 Phys. Rev. B 82 064426

    [19]

    Yuan H Y, Wang X R 2014 Phys. Rev. B 89 054423

    [20]

    Huang S H, Laia C H 2009 Appl. Phys. Lett. 95 032505

    [21]

    Leliaert J, Wiele B V, Vansteenkiste A 2014 Phys. Rev. B 89 064419

    [22]

    Martinez E 2012 J. Appl. Phys. 111 07D302

    [23]

    Zhu J, Han Z, Su Y, Hu J 2014 J. Magn. Magn. Mater. 369 96

    [24]

    Martinez E, Lopez-Diaz L, Alejos O, Torres L 2009 J. Appl. Phys. 106 043914

    [25]

    Garcia-Sanchez F, Szambolics H, Mihai A, Vila L, Marty A, Attané J, Toussaint J, Buda-Prejbeanu L D 2010 Phys. Rev. B 81 134408

    [26]

    He J, Li Z, Zhang S 2006 Phys. Rev. B 73 184408

    [27]

    Thiaville A, Nakatani Y, Miltat J, Suzuki Y 2005 Europhys. Lett. 69 90

    [28]

    Burn D M, Atkinson D 2013 Appl. Phys. Lett. 102 242414

    [29]

    Zhang S, Li Z 2004 Phys. Rev. Lett. 93 127204

    [30]

    Bryan M T, Schrefl T, Atkinson D, Allwood D A 2008 J. Appl. Phys. 103 073906

  • [1]

    Parkin S S P, Hayashi M, Thomas L 2008 Science 320 190

    [2]

    Allwood D A, Xiong G, Faulkner C C, Atkinson D, Petit D, Cowburn R P 2005 Science 309 2008

    [3]

    Ito M, Ooba A, Komine T, Sugita R 2013 J. Magn. Magn. Mater. 340 61

    [4]

    Komine T, Takahashi K, Ooba A, Sugita R 2011 J. Appl. Phys. 109 07D503

    [5]

    Roy P E, Wunderlich J 2011 Appl. Phys. Lett. 99 122504

    [6]

    Heyne L, Rhensius J, Bisig A, Krzyk S, Punke P 2010 Appl. Phys. Lett. 96 032504

    [7]

    Heinen J, Boulle O, Rousseau K, Malinowski G, Klöui M 2010 Appl. Phys. Lett. 96 202510

    [8]

    Curiale J, Lemaitre A, Ulysse C, Faini G, Jeudy V 2012 Phys. Rev. Lett. 108 076604

    [9]

    Torrejon J, Malinowski G, Pelloux M, Weil R, Thiaville A, Curiale J, Lacour D, Montaigne F, Hehn M 2012 Phys. Rev. Lett. 109 106601

    [10]

    Su Y, Sun J, Hu J, Lei H 2013 Europhys. Lett. 103 67004

    [11]

    Curiale J, Lemaitre A, Niazi T, Faini G, Jeudy V 2012 J. Appl. Phys. 112 103922

    [12]

    Glathe S, Mattheis R, Berkov D V 2008 Appl. Phys. Lett. 93 072508

    [13]

    Schryer N L, Walker L R 1974 J. Appl. Phys. 45 5406

    [14]

    Yan M, Kákay A, Gliga S, Hertel R 2010 Phys. Rev. Lett. 104 057201

    [15]

    Lee J Y, Lee K S, Kim S K 2007 Appl. Phys. Lett. 91 122513

    [16]

    Kruger B, Kim D H, Fischer P 2007 Phys. Rev. Lett. 98 187202

    [17]

    Ueda K, Koyama T, Chiba D, Shimamura K, Tanigawa H, Fukami S, Suzuki T, Ohshima N, Ishiwata N, Nakatani Y 2011 Appl. Phys. Express 4 063003

    [18]

    Akerman J, Muöoz M, Maicas M, Prieto J L 2010 Phys. Rev. B 82 064426

    [19]

    Yuan H Y, Wang X R 2014 Phys. Rev. B 89 054423

    [20]

    Huang S H, Laia C H 2009 Appl. Phys. Lett. 95 032505

    [21]

    Leliaert J, Wiele B V, Vansteenkiste A 2014 Phys. Rev. B 89 064419

    [22]

    Martinez E 2012 J. Appl. Phys. 111 07D302

    [23]

    Zhu J, Han Z, Su Y, Hu J 2014 J. Magn. Magn. Mater. 369 96

    [24]

    Martinez E, Lopez-Diaz L, Alejos O, Torres L 2009 J. Appl. Phys. 106 043914

    [25]

    Garcia-Sanchez F, Szambolics H, Mihai A, Vila L, Marty A, Attané J, Toussaint J, Buda-Prejbeanu L D 2010 Phys. Rev. B 81 134408

    [26]

    He J, Li Z, Zhang S 2006 Phys. Rev. B 73 184408

    [27]

    Thiaville A, Nakatani Y, Miltat J, Suzuki Y 2005 Europhys. Lett. 69 90

    [28]

    Burn D M, Atkinson D 2013 Appl. Phys. Lett. 102 242414

    [29]

    Zhang S, Li Z 2004 Phys. Rev. Lett. 93 127204

    [30]

    Bryan M T, Schrefl T, Atkinson D, Allwood D A 2008 J. Appl. Phys. 103 073906

  • [1] 刘想, 王希光, 李志雄, 郭光华. 铁磁畴壁中自旋极化电流诱导的左旋极化自旋波.  , 2024, 73(14): 147501. doi: 10.7498/aps.73.20240651
    [2] 李柱柏, 魏磊, 张震, 段东伟, 赵倩. 磁振子宏观效应以及热扰动场对反磁化的影响.  , 2022, 71(12): 127502. doi: 10.7498/aps.71.20220168
    [3] 张硕, 龙连春, 刘静毅, 杨洋. 缺陷对铁单质薄膜磁致伸缩与磁矩演化的影响.  , 2022, 71(1): 017502. doi: 10.7498/aps.71.20211177
    [4] 何安, 薛存. 缺陷调控临界温度梯度超导膜的磁通整流反转效应.  , 2022, 71(2): 027401. doi: 10.7498/aps.71.20211157
    [5] 张硕, 龙连春, 刘静毅, 杨洋. 分子动力学方法研究缺陷对铁单质薄膜磁致伸缩的影响.  , 2021, (): . doi: 10.7498/aps.70.20211177
    [6] 王凯悦, 郭睿昂, 王宏兴. 金刚石氮-空位缺陷发光的温度依赖性.  , 2020, 69(12): 127802. doi: 10.7498/aps.69.20200395
    [7] 李柱柏, 李赟, 秦渊, 张雪峰, 沈保根. 稀土永磁体及复合磁体反磁化过程和矫顽力.  , 2019, 68(17): 177501. doi: 10.7498/aps.68.20190364
    [8] 徐桂舟, 徐展, 丁贝, 侯志鹏, 王文洪, 徐锋. 磁畴壁手性和磁斯格明子的拓扑性表征及其调控.  , 2018, 67(13): 137508. doi: 10.7498/aps.67.20180513
    [9] 曾永辉, 江五贵, Qin Qing-Hua. 螺旋上升对自激发锯齿型双壁碳纳米管振荡行为的影响.  , 2016, 65(14): 148802. doi: 10.7498/aps.65.148802
    [10] 洪斌斌, 陈少永, 唐昌建, 张新军, 胡有俊. 托卡马克中电子回旋波与低杂波协同驱动的物理研究.  , 2012, 61(11): 115207. doi: 10.7498/aps.61.115207
    [11] 李岩, 傅海威, 邵敏, 李晓莉. 石墨点阵柱状光子晶体共振腔的温度特性.  , 2011, 60(7): 074219. doi: 10.7498/aps.60.074219
    [12] 林丽艳, 杜磊, 包军林, 何亮. 光电耦合器电离辐射损伤电流传输比1/f噪声表征.  , 2011, 60(4): 047202. doi: 10.7498/aps.60.047202
    [13] 程正富, 龙晓霞, 郑瑞伦. 温度对光学微腔光子激子系统玻色凝聚的影响.  , 2010, 59(12): 8377-8384. doi: 10.7498/aps.59.8377
    [14] 韩茹, 樊晓桠, 杨银堂. n-SiC拉曼散射光谱的温度特性.  , 2010, 59(6): 4261-4266. doi: 10.7498/aps.59.4261
    [15] 王亚珍, 黄平, 龚中良. 温度对微界面摩擦影响的研究.  , 2010, 59(8): 5635-5640. doi: 10.7498/aps.59.5635
    [16] 陈丕恒, 敖冰云, 李炬, 李嵘, 申亮. 温度对bcc铁中He行为影响的模拟研究.  , 2009, 58(4): 2605-2611. doi: 10.7498/aps.58.2605
    [17] 张凯旺, 钟建新. 缺陷对单壁碳纳米管熔化与预熔化的影响.  , 2008, 57(6): 3679-3683. doi: 10.7498/aps.57.3679
    [18] 陈国庆, 吴亚敏, 陆兴中. 金属/电介质颗粒复合介质光学双稳的温度效应.  , 2007, 56(2): 1146-1151. doi: 10.7498/aps.56.1146
    [19] 姜本学, 徐 军, 李红军, 王静雅, 赵广军, 赵志伟. 温度梯度法生长Nd:YAG激光晶体的核心分布.  , 2007, 56(2): 1014-1019. doi: 10.7498/aps.56.1014
    [20] 李鹏飞, 颜晓红, 王如志. 缺陷对准周期磁超晶格输运性质的影响.  , 2002, 51(9): 2139-2143. doi: 10.7498/aps.51.2139
计量
  • 文章访问数:  6983
  • PDF下载量:  252
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-08
  • 修回日期:  2016-08-26
  • 刊出日期:  2016-12-05

/

返回文章
返回
Baidu
map