-
利用含时量子波包动力学方法研究了两束基频与倍频脉冲控制下的扩展“ladder”式跃迁.通过基频与2倍频脉冲控制分子布居从|0,0>态跃迁至|5,0>与|5,2>态;基频与3倍频脉冲控制分子布居从|0,0>态跃迁至|5,3>与|6,2>态.计算结果表明,利用两束基频与倍频脉冲,通过“ladder”式跃迁,可以得到近100%的布居跃迁概率.两束脉冲间的相对相位角影响分子的布居分布.当脉冲频率比为1:2时,布居以π为周期变化;当脉冲频率比为1:3时,布居以2π为周期变化.
-
关键词:
- "ladder"式跃迁 /
- 波包 /
- 相对相位角 /
- 基频脉冲
The extended “ladder” transition controlled by two harmonic pulses is investigated by using a time-dependent quantum wave packet method. The molecular population transfers from the state|0, 0> angle to the states|5, 0> angle and|5, 2> angle induced by the fundamental and second-harmonic pulses, and to the states|5, 3> angle and |6, 2> angle induced by the fundamental and third-harmonic pulses. The calculated results show that the two harmonic pulses can induce a nearly 100% of population to transfer to the target state. The relative phase of two pulses can affect the population distribution. The variation of population has a period of π for the fundamental and second-harmonic pulses, and a period of 2π for the fundamental and third-harmonic pulses.-
Keywords:
- "ladder" transition /
- wave packet /
- relative phase /
- fundamental pulse
[1] Bergmann K, Theuer H, Shore B W 1998 Rev. Mod. Phys. 70 1003
[2] Shapiro E A, Pe'er A, Ye J, Shapiro M 2008 Phys. Rev. Lett. 101 023601
[3] Hu J, Han K L, He G Z 2005 Phys. Rev. Lett. 95 123001
[4] Luo S, Zhu R, He L, Hu W, Li X, Ma P, Wang C, Liu F, Roeterdink W G, Stolte S, Ding D 2015 Phys. Rev. A 91 053408
[5] Liu F, Wang J, Zhao J, Xu Y, Meng Q T 2011 Acta Phys. Sin. 60 040202 (in Chinese)[刘芳, 王军, 赵娟, 许燕, 孟庆田2011 60 040202]
[6] Takekoshi T, Reichsllner L, Schindewolf A, Hutson J M, Sueur C R L, Dulieu O, Ferlaino F, Grimm R, Nägerl H C 2014 Phys. Rev. Lett. 113 205301
[7] Vitanov N V, Shore B W 2006 Phys. Rev. A 73 053402
[8] Niu Y Y, Wang R, Qiu M H 2010 Phys. Rev. A 81 043406
[9] Castro A, Werschnik J, Gross E K U 2012 Phys. Rev. Lett. 109 153603
[10] Shi S H, Woody A, Rabitz H 1988 J. Chem. Phys. 88 6870
[11] Hornung T, Motzkus M, de Vivie-Riedle R 2002 Phys. Rev. A 65 021403(R)
[12] Brumer P, Shapiro M 1986 Chem. Phys. Lett. 126 541
[13] Shapiro M, Hepburn J W, Brumer P 1988 Chem. Phys. Lett. 149 451
[14] Niu Y Y, Wang R, Xiu J L 2012 Acta Phys.Sin. 61 093302 (in Chinese)[牛英煜, 王荣, 修俊玲2012 61 093302]
[15] Wang R, Xiu J L, Niu Y Y 2013 Acta Phys. Sin. 62 093301 (in Chinese)[王荣, 修俊玲, 牛英煜2013 62 093301]
[16] Charron E, Giusti-Suzor A, Mies F H 1993 Phys. Rev. Lett. 71 692
[17] Bandrauk A D, Chelkowski S 2000 Phys. Rev. Lett. 84 3562
[18] Ohmura H, Nakanaga T, Tachiya M 2004 Phys. Rev. Lett. 92 113002
[19] Yatsenko L P, Guérin S, Halfmann T, Böhmer K, Shore B W, Bergmann K 1998 Phys. Rev. A 58 4683
[20] Marx C A, Jakubetz W 2006 J. Chem. Phys. 125 234103
[21] Böhmer K, Halfmann T, Yatsenko L P, Shore B W, Bergmann K 2001 Phys. Rev. A 64 023404
[22] Niu Y Y, Wang R, Qiu M H 2011 Phys. Rev. A 84 023406
[23] Remacle F, Levine R D 2006 Phys. Rev. A 73 033820
[24] Shu C C, Yu J, Yuan K J, Hu W H, Yang J, Cong S L 2009 Phys. Rev. A 79 023418
[25] Andrianov I V, Paramonov G K 1999 Phys. Rev. A 59 2134
[26] Feit M D, Fleck Jr J A, Steiger A 1982 J. Comput. Phys. 47 412
[27] Han Y C, Yuan K J, Hu W H, Yan T M, Cong S L 2008 J. Chem. Phys. 128 134303
[28] Marston C C, Balint-Kurti G G 1989 J. Chem. Phys. 91 3571
-
[1] Bergmann K, Theuer H, Shore B W 1998 Rev. Mod. Phys. 70 1003
[2] Shapiro E A, Pe'er A, Ye J, Shapiro M 2008 Phys. Rev. Lett. 101 023601
[3] Hu J, Han K L, He G Z 2005 Phys. Rev. Lett. 95 123001
[4] Luo S, Zhu R, He L, Hu W, Li X, Ma P, Wang C, Liu F, Roeterdink W G, Stolte S, Ding D 2015 Phys. Rev. A 91 053408
[5] Liu F, Wang J, Zhao J, Xu Y, Meng Q T 2011 Acta Phys. Sin. 60 040202 (in Chinese)[刘芳, 王军, 赵娟, 许燕, 孟庆田2011 60 040202]
[6] Takekoshi T, Reichsllner L, Schindewolf A, Hutson J M, Sueur C R L, Dulieu O, Ferlaino F, Grimm R, Nägerl H C 2014 Phys. Rev. Lett. 113 205301
[7] Vitanov N V, Shore B W 2006 Phys. Rev. A 73 053402
[8] Niu Y Y, Wang R, Qiu M H 2010 Phys. Rev. A 81 043406
[9] Castro A, Werschnik J, Gross E K U 2012 Phys. Rev. Lett. 109 153603
[10] Shi S H, Woody A, Rabitz H 1988 J. Chem. Phys. 88 6870
[11] Hornung T, Motzkus M, de Vivie-Riedle R 2002 Phys. Rev. A 65 021403(R)
[12] Brumer P, Shapiro M 1986 Chem. Phys. Lett. 126 541
[13] Shapiro M, Hepburn J W, Brumer P 1988 Chem. Phys. Lett. 149 451
[14] Niu Y Y, Wang R, Xiu J L 2012 Acta Phys.Sin. 61 093302 (in Chinese)[牛英煜, 王荣, 修俊玲2012 61 093302]
[15] Wang R, Xiu J L, Niu Y Y 2013 Acta Phys. Sin. 62 093301 (in Chinese)[王荣, 修俊玲, 牛英煜2013 62 093301]
[16] Charron E, Giusti-Suzor A, Mies F H 1993 Phys. Rev. Lett. 71 692
[17] Bandrauk A D, Chelkowski S 2000 Phys. Rev. Lett. 84 3562
[18] Ohmura H, Nakanaga T, Tachiya M 2004 Phys. Rev. Lett. 92 113002
[19] Yatsenko L P, Guérin S, Halfmann T, Böhmer K, Shore B W, Bergmann K 1998 Phys. Rev. A 58 4683
[20] Marx C A, Jakubetz W 2006 J. Chem. Phys. 125 234103
[21] Böhmer K, Halfmann T, Yatsenko L P, Shore B W, Bergmann K 2001 Phys. Rev. A 64 023404
[22] Niu Y Y, Wang R, Qiu M H 2011 Phys. Rev. A 84 023406
[23] Remacle F, Levine R D 2006 Phys. Rev. A 73 033820
[24] Shu C C, Yu J, Yuan K J, Hu W H, Yang J, Cong S L 2009 Phys. Rev. A 79 023418
[25] Andrianov I V, Paramonov G K 1999 Phys. Rev. A 59 2134
[26] Feit M D, Fleck Jr J A, Steiger A 1982 J. Comput. Phys. 47 412
[27] Han Y C, Yuan K J, Hu W H, Yan T M, Cong S L 2008 J. Chem. Phys. 128 134303
[28] Marston C C, Balint-Kurti G G 1989 J. Chem. Phys. 91 3571
计量
- 文章访问数: 6580
- PDF下载量: 118
- 被引次数: 0