搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

极化检测型铷原子磁力仪的研究

汪之国 罗晖 樊振方 谢元平

引用本文:
Citation:

极化检测型铷原子磁力仪的研究

汪之国, 罗晖, 樊振方, 谢元平

Research on an pump-probe rubidium magnetometer

Wang Zhi-Guo, Luo Hui, Fan Zhen-Fang, Xie Yuan-Ping
PDF
导出引用
  • 针对交变弱磁场的检测,研制了一种基于极化-检测双光束结构的激光抽运铷原子磁力仪.为了获得该磁力仪对磁场的响应特性,通过数值仿真分析了信号幅度随极化磁场强度、弛豫时间的变化关系,并进行了实验验证.最后通过选择合适的极化磁场使磁力仪对待测磁场的灵敏度最大.实验结果表明,优化后磁力仪灵敏度为0.2 m pT/Hz,响应带宽3.5 kHz,可用于弱磁场磁共振、高频异常物理现象等信号的检测.
    In order to measure a weak alternating magnetic field, an optically-pumped Rb magnetometer based on pump-probe structure is investigated and demonstrated. The pumping light and probing light propagate along the z axis and x axis, respectively. A constant polarization magnetic field along the pumping light is applied, which not only stabilizes the polarization of Rb atoms but also tunes resonance frequency of Rb atoms. When a weak alternating magnetic field is applied perpendicularly to the constant magnetic field, the magnetic moment will tip off the z axis and rotate around the z axis. And then the polarization plane of probing light is modulated correspondingly. The x component of the magnetic moment can be obtained with a balanced detector. As a result, a signal proportional to weak alternating magnetic field can be obtained.In order to obtain the magnetic response of the magnetometer, we analyze the signal amplitude as a function of polarization magnetic field strength B0 and transverse relaxation time 2 with numerical simulation. The amplitude-frequency response of the magnetometer is determined mainly by two parameters, namely cutoff frequency c=1/2 and resonance frequency 0= B0, where is the gyromagnetic ratio of Rb atom. At low frequency, that is a0 and a 0c2, the magnetometer has a flat response, here a is the frequency of the weak alternating magnetic field. If 0c, the signal amplitude will be large for large 0 or small c. For a given c, the peak response appears at 0=c. In the vicinity of resonance frequency, if c0, a peak will appear and if c 0, no peak occurs. At high frequency, the amplitude will decrease with the increase of a.We verify the above analyses in experiment. A vapor cell with a short transverse relaxation time is used to obtain large frequency response bandwidth. Through optimizing the powers and frequencies of pumping laser and probing laser, high polarization and detection sensitivity of atomic spin can be obtained. Moreover, through choosing an appropriate polarization magnetic field, the magnetometer can be maximally sensitive to the magnetic field to be measured. The experimental results show that the magnetometer has a sensitivity of about m 0.2; pT/HzHz and bandwidth of about 3.5 kHz. It can be used to detect low field magnetic resonance and high frequency abnormal physical phenomena.
      通信作者: 罗晖, luohui.luo@163.com
    • 基金项目: 国防科技大学科研计划(批准号:JC140702)资助的课题.
      Corresponding author: Luo Hui, luohui.luo@163.com
    • Funds: Project supported by the Science Research Program of National University of Defense Technology, China(Grant No. JC140702).
    [1]

    Guan Z N 2003 Geomagnetic Field and Magnetic Exploration (Beijing:Geological Publishing House) p257(in Chinese)[管志宁2003地磁场与磁力勘探(北京:地质出版社)第257页]

    [2]

    Clem T R 1998 Naval Engineers J. 110 139

    [3]

    Corsini E, Acosta V, Baddour N, Higbie J, Lester B, Licht P, Patton B, Prouty M, Budker D 2011 J. Appl. Phys. 109 074701

    [4]

    Wyllie R, Kauer M, Wakai R T, Walker T G 2012 Opt. Lett. 37 2247

    [5]

    Rodriguez E, George N, Lachaux J P, Martinerie J, Renault B, Varela F J 1999 Nature 397 430

    [6]

    Bison G, Wynands R, Weis A 2003 Appl. Phys. B 76 325

    [7]

    Xia H, Baranga A B, Hoffman D, Romalis M V 2006 Appl. Phys. Lett. 89 211104

    [8]

    Xu S, Yashchuk V V, Donaldson M H, Rochester S M, Budker D, Pines A 2006 Proc. Natl. Acad. Sci. 103 12668

    [9]

    Bulatowicz M, Griffith R, Larsen M, Mirijanian J, Fu C B, Smith E, Snow W M, Yan H, Walker T G 2013 Phys. Rev. Lett. 111 102001

    [10]

    Budker D, Romalis M 2007 Nat. Phys. 3 227

    [11]

    Kimball D F J, Lacey I, Valdez J, Swiatlowski J, Rios C, Peregrina-Ramirez R, Montcrieffe C, Kremer J, Dudley J, Sanchez C 2013 Ann. Phys. 525 514

    [12]

    Pustelny S, Kimball D F J, Pankow C, Ledbetter M P, Wlodarczyk P, Wcislo P, Pospelov M, Smith J, Read J, Gawlik W, Budker D 2013 Ann. Phys. 525 659

    [13]

    Romalis M V, Griffith W C, Jacobs J P, Fortson E N 2001 Phys. Rev. Lett. 86 2505

    [14]

    Youdin A N, Krause J D, Jagannathan K, Hunter L R, Lamoreaux S K 1996 Phys. Rev. Lett. 77 2170

    [15]

    Berglund C J, Hunter L R, Krause Jr D, Prigge E O, Ronfeldt M S, Lamoreaux S K 1995 Phys. Rev. Lett. 75 1879

    [16]

    Murthy S A, Krause J D, Li Z L, Hunter L R 1989 Phys. Rev. Lett. 63 965

    [17]

    Kominis I K, Kornack T W, Allred J C, Romalis M V 2003 Nature 422 596

    [18]

    Allred J C, Lyman R N, Kornack T W, Romalis M V 2002 Phys. Rev. Lett. 89 130801

    [19]

    Li Q M, Zhang J H, Zeng X J, Huang Q, Sun W M 2013 Laser Optoelectronics Progress 50 072802(in Chinese)[李庆萌, 张军海, 曾宪金, 黄强, 孙伟民2013激光与光电子学进展50 072802]

    [20]

    Liu Q, Zhuo Y N, Sun Y D, Fu T S 2014 Laser Optoelectronics Progress 51 042301(in Chinese)[刘强, 卓艳男, 孙宇丹, 付天舒2014激光与光电子学进展51 042301]

    [21]

    Li S G, Zhou X, Cao X C, Sheng J T, Xu Y F, Wang Z Y, Lin Q 2010 Acta Phys. Sin. 59 877(in Chinese)[李曙光, 周翔, 曹晓超, 盛继腾, 徐云飞, 王兆英, 林强2010 59 877]

    [22]

    Gu Y, Shi R Y, Wang Y H 2014 Acta Phys. Sin. 63 110701(in Chinese)[顾源, 石荣晔, 王延辉2014 63 110701]

    [23]

    Shi R, Wang Y 2013 Chin. Phys. B 22 100703

    [24]

    Ding Z, Yuan J, Wang Z, Yang K, Luo H 2015 Chin. Phys. B 24 083202

    [25]

    Donley E A 2010 Sensors IEEE 143 17

    [26]

    Kwon T M, Mark J G, Volk C H 1982 Phys. Rev. A 24 1894

    [27]

    Ding Z C, Li Y Y, Wang Z G, Yang K Y, Yuan J 2015 Chin. J. Lasers 42 0408003(in Chinese)[丁志超, 李莹颖, 汪之国, 杨开勇, 袁杰2015中国激光42 0408003]

    [28]

    Cohen-Tannoudji C 1973 Fundamental and Applied Laser Physics (Chichester:John Wiley) p791

    [29]

    Feng Y S 1989 Principles of Magnetic Resonace (Beijing:Higher Education Press) p39

    [30]

    Huang H C, Dong H F, Hao H J, Hu X Y 2015 Chin. Phys. Lett. 32 098503

    [31]

    Fu J Q, Du P C, Zhou Q, Wang R Q 2016 Chin. Phys. B 25 010302

    [32]

    Zhang J H, Liu Q, Zeng X J, Li J X, Sun W M 2012 Chin. Phys. Lett. 29 068501

  • [1]

    Guan Z N 2003 Geomagnetic Field and Magnetic Exploration (Beijing:Geological Publishing House) p257(in Chinese)[管志宁2003地磁场与磁力勘探(北京:地质出版社)第257页]

    [2]

    Clem T R 1998 Naval Engineers J. 110 139

    [3]

    Corsini E, Acosta V, Baddour N, Higbie J, Lester B, Licht P, Patton B, Prouty M, Budker D 2011 J. Appl. Phys. 109 074701

    [4]

    Wyllie R, Kauer M, Wakai R T, Walker T G 2012 Opt. Lett. 37 2247

    [5]

    Rodriguez E, George N, Lachaux J P, Martinerie J, Renault B, Varela F J 1999 Nature 397 430

    [6]

    Bison G, Wynands R, Weis A 2003 Appl. Phys. B 76 325

    [7]

    Xia H, Baranga A B, Hoffman D, Romalis M V 2006 Appl. Phys. Lett. 89 211104

    [8]

    Xu S, Yashchuk V V, Donaldson M H, Rochester S M, Budker D, Pines A 2006 Proc. Natl. Acad. Sci. 103 12668

    [9]

    Bulatowicz M, Griffith R, Larsen M, Mirijanian J, Fu C B, Smith E, Snow W M, Yan H, Walker T G 2013 Phys. Rev. Lett. 111 102001

    [10]

    Budker D, Romalis M 2007 Nat. Phys. 3 227

    [11]

    Kimball D F J, Lacey I, Valdez J, Swiatlowski J, Rios C, Peregrina-Ramirez R, Montcrieffe C, Kremer J, Dudley J, Sanchez C 2013 Ann. Phys. 525 514

    [12]

    Pustelny S, Kimball D F J, Pankow C, Ledbetter M P, Wlodarczyk P, Wcislo P, Pospelov M, Smith J, Read J, Gawlik W, Budker D 2013 Ann. Phys. 525 659

    [13]

    Romalis M V, Griffith W C, Jacobs J P, Fortson E N 2001 Phys. Rev. Lett. 86 2505

    [14]

    Youdin A N, Krause J D, Jagannathan K, Hunter L R, Lamoreaux S K 1996 Phys. Rev. Lett. 77 2170

    [15]

    Berglund C J, Hunter L R, Krause Jr D, Prigge E O, Ronfeldt M S, Lamoreaux S K 1995 Phys. Rev. Lett. 75 1879

    [16]

    Murthy S A, Krause J D, Li Z L, Hunter L R 1989 Phys. Rev. Lett. 63 965

    [17]

    Kominis I K, Kornack T W, Allred J C, Romalis M V 2003 Nature 422 596

    [18]

    Allred J C, Lyman R N, Kornack T W, Romalis M V 2002 Phys. Rev. Lett. 89 130801

    [19]

    Li Q M, Zhang J H, Zeng X J, Huang Q, Sun W M 2013 Laser Optoelectronics Progress 50 072802(in Chinese)[李庆萌, 张军海, 曾宪金, 黄强, 孙伟民2013激光与光电子学进展50 072802]

    [20]

    Liu Q, Zhuo Y N, Sun Y D, Fu T S 2014 Laser Optoelectronics Progress 51 042301(in Chinese)[刘强, 卓艳男, 孙宇丹, 付天舒2014激光与光电子学进展51 042301]

    [21]

    Li S G, Zhou X, Cao X C, Sheng J T, Xu Y F, Wang Z Y, Lin Q 2010 Acta Phys. Sin. 59 877(in Chinese)[李曙光, 周翔, 曹晓超, 盛继腾, 徐云飞, 王兆英, 林强2010 59 877]

    [22]

    Gu Y, Shi R Y, Wang Y H 2014 Acta Phys. Sin. 63 110701(in Chinese)[顾源, 石荣晔, 王延辉2014 63 110701]

    [23]

    Shi R, Wang Y 2013 Chin. Phys. B 22 100703

    [24]

    Ding Z, Yuan J, Wang Z, Yang K, Luo H 2015 Chin. Phys. B 24 083202

    [25]

    Donley E A 2010 Sensors IEEE 143 17

    [26]

    Kwon T M, Mark J G, Volk C H 1982 Phys. Rev. A 24 1894

    [27]

    Ding Z C, Li Y Y, Wang Z G, Yang K Y, Yuan J 2015 Chin. J. Lasers 42 0408003(in Chinese)[丁志超, 李莹颖, 汪之国, 杨开勇, 袁杰2015中国激光42 0408003]

    [28]

    Cohen-Tannoudji C 1973 Fundamental and Applied Laser Physics (Chichester:John Wiley) p791

    [29]

    Feng Y S 1989 Principles of Magnetic Resonace (Beijing:Higher Education Press) p39

    [30]

    Huang H C, Dong H F, Hao H J, Hu X Y 2015 Chin. Phys. Lett. 32 098503

    [31]

    Fu J Q, Du P C, Zhou Q, Wang R Q 2016 Chin. Phys. B 25 010302

    [32]

    Zhang J H, Liu Q, Zeng X J, Li J X, Sun W M 2012 Chin. Phys. Lett. 29 068501

  • [1] 寇科, 王错, 王晛, 连天虹, 焦明星, 樊毓臻. 线性调频激光回馈粒度探测灵敏度提升方法.  , 2023, 72(16): 169501. doi: 10.7498/aps.72.20230569
    [2] 庞爽, 冯玉玲, 于萍, 姚治海. 自混沌光相位调制光反馈半导体激光器输出光的混沌特性.  , 2022, 71(15): 150502. doi: 10.7498/aps.71.20220204
    [3] 陈大勇, 缪培贤, 史彦超, 崔敬忠, 刘志栋, 陈江, 王宽. 抽运-检测型原子磁力仪对电流源噪声的测量.  , 2022, 71(2): 024202. doi: 10.7498/aps.71.20211122
    [4] 陈大勇, 缪培贤. 抽运-检测型原子磁力仪对电流源噪声的测量.  , 2021, (): . doi: 10.7498/aps.70.20211122
    [5] 张文杰, 刘郁松, 郭浩, 韩星程, 蔡安江, 李圣昆, 赵鹏飞, 刘俊. 双螺线圈射频共振结构增强硅空位自旋传感灵敏度方法.  , 2020, 69(23): 234206. doi: 10.7498/aps.69.20200765
    [6] 李增, 冯玉玲, 王晓茜, 姚治海. 半导体激光器输出混沌光的延时特性和带宽.  , 2018, 67(14): 140501. doi: 10.7498/aps.67.20180035
    [7] 左小杰, 孙颍榕, 闫智辉, 贾晓军. 高灵敏度的量子迈克耳孙干涉仪.  , 2018, 67(13): 134202. doi: 10.7498/aps.67.20172563
    [8] 胡泽华, 叶涛, 刘雄国, 王佳. 抽样法与灵敏度法keff不确定度量化.  , 2017, 66(1): 012801. doi: 10.7498/aps.66.012801
    [9] 缪培贤, 杨世宇, 王剑祥, 廉吉庆, 涂建辉, 杨炜, 崔敬忠. 抽运-检测型非线性磁光旋转铷原子磁力仪的研究.  , 2017, 66(16): 160701. doi: 10.7498/aps.66.160701
    [10] 苏斌斌, 陈建军, 吴正茂, 夏光琼. 混沌光注入垂直腔面发射激光器混沌输出的时延和带宽特性.  , 2017, 66(24): 244206. doi: 10.7498/aps.66.244206
    [11] 史生才, 李婧, 张文, 缪巍. 超高灵敏度太赫兹超导探测器.  , 2015, 64(22): 228501. doi: 10.7498/aps.64.228501
    [12] 王俊平, 戚苏阳, 刘士钢. 基于版图优化的综合灵敏度模型.  , 2014, 63(12): 128503. doi: 10.7498/aps.63.128503
    [13] 徐晋, 谢品华, 司福祺, 李昂, 周海金, 吴丰成, 王杨, 刘建国, 刘文清. 基于机载平台的NO2 垂直廓线反演灵敏度研究.  , 2013, 62(10): 104214. doi: 10.7498/aps.62.104214
    [14] 李楠, 黄凯凯, 陆璇辉. 提高激光抽运铯原子磁力仪灵敏度的研究.  , 2013, 62(13): 133201. doi: 10.7498/aps.62.133201
    [15] 侯建平, 宁韬, 盖双龙, 李鹏, 郝建苹, 赵建林. 基于光子晶体光纤模间干涉的折射率测量灵敏度分析.  , 2010, 59(7): 4732-4737. doi: 10.7498/aps.59.4732
    [16] 李曙光, 周翔, 曹晓超, 盛继腾, 徐云飞, 王兆英, 林强. 全光学高灵敏度铷原子磁力仪的研究.  , 2010, 59(2): 877-882. doi: 10.7498/aps.59.877
    [17] 宗楠, 崔大复, 李成明, 彭钦军, 许祖彦, 秦莉, 李特, 宁永强, 晏长岭, 王立军. 光抽运垂直扩展腔面发射激光器腔内倍频理论研究.  , 2009, 58(6): 3903-3908. doi: 10.7498/aps.58.3903
    [18] 任利春, 周林, 李润兵, 刘敏, 王谨, 詹明生. 不同序列拉曼光脉冲对原子重力仪灵敏度的影响.  , 2009, 58(12): 8230-8235. doi: 10.7498/aps.58.8230
    [19] 刘 迎, 王利军, 郭云峰, 张小娟, 高宗慧, 田会娟. 空间分辨漫反射的高阶参量灵敏度.  , 2007, 56(4): 2119-2123. doi: 10.7498/aps.56.2119
    [20] 王云才, 张耕玮, 王安帮, 王冰洁, 李艳丽, 郭 萍. 光注入提高半导体激光器混沌载波发射机的带宽.  , 2007, 56(8): 4372-4377. doi: 10.7498/aps.56.4372
计量
  • 文章访问数:  7385
  • PDF下载量:  445
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-07
  • 修回日期:  2016-07-16
  • 刊出日期:  2016-11-05

/

返回文章
返回
Baidu
map