搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改进的自适应免疫优化算法用于Pd-Pt合金团簇结构快速优化

吴夏 刘启满 段仁燕 魏征

引用本文:
Citation:

改进的自适应免疫优化算法用于Pd-Pt合金团簇结构快速优化

吴夏, 刘启满, 段仁燕, 魏征

A modified adaptive immune optimization algorithm for geometrical optimization of Pd-Pt clusters

Wu Xia, Liu Qi-Man, Duan Ren-Yan, Wei Zheng
PDF
导出引用
  • Pd-Pt合金团簇在催化、光学和磁学等基础科学及应用领域吸引了广泛的研究兴趣,优化不同元素序列组成的最稳定结构是探究其特殊性质的首要任务.本文结合了启发式优化算法的优点及动态建模的思想,提出了一种自适应免疫优化算法(AIOA)的改进算法,称之为AIOA-BDLS-ILS算法,用于合金团簇结构快速优化.运用该算法优化标准的二元Lennard-Jones模型团簇结构以测试算法效率,结果表明与BDLS-ILS算法相比该算法更为高效.优化34原子Pd-Pt团簇时发现了12个能量更低的结构.此外,50及79原子Pd-Pt团簇中,十面体及外层密堆积的十面体构型为主要构型,还存在双面心立方结构及少量的不完整二十面体结构.序列参数显示Pd-Pt团簇中Pd和Pt分层现象明显.
    Bimetallic Pd-Pt clusters have attracted wide interest because of their special catalytic, optical, electronic, and magnetic properties. However, the geometrical optimization of Pd-Pt cluster has been a difficult task due to the homotopic problem, i.e., in some binary clusters, these clusters are identical in configuration, but different in relative arrangement of two types of atoms. For a fixed geometrical configuration the iterated local search(ILS) method is adopted to search the optimal homotop. By the combination of the merit of heuristic optimization algorithm and the idea of dynamic lattice searching(DLS), an adaptive immune optimization algorithm(AIOA) is modified, and the modified AIOA is called AIOA-BDLS-ILS method. To evaluate the efficiency of the improved method, the optimization of binary Lennard-Jones clusters up to 100 atoms is performed. The Results show that the CPU time for one hit of the global minima is less than 5000 s for all clusters and it is less than 1000 s for most clusters. Compared with previously reported BDLS-ILS method, the proposed method is very efficient. The method is thus proved to be efficient. It can be deduced that the method should be a universal algorithm for the fast optimization of binary or bimetallic clusters. Furthermore, the Gupta potential is used to describe the interatomic interactions in Pd-Pt clusters, which is based on the second moment approximation to tight binding theory, and the corresponding potential parameters are fitted to the experimental values of cohesive energy, lattice constant, and elastic constants for the face centered cubic crystal structure at 0 K. The structural optimizations of Pd-Pt clusters with 34, 50 and 79 atoms are performed by the AIOA-BDLS-ILS method. Results show that for optimizing the 34-atom Pd-Pt clusters, 12 new structures with lower energies are found. In 34-atom bimetallic Pd-Pt clusters, the motifs can be categorized into five classes, i.e., 12 decahedral structures, 3 decahedral structures with close packing anti-layers, 7 incomplete Mackay icosahedral structures, 6 poly-icosahedral structures, and 5 structures composed of two 19-atom double icosahedra. In 50- and 79-atom Pd-Pt clusters, the structural characteristics and the atomic distributions are analyzed. The results indicate that the decahedral and decahedral structures with close-packed configurations are dominant, and twin face centered cubic and partial icosahedral structures are also found. Moreover, the order parameter is adopted to analyze the distributions of different types of atoms in Pd-Pt clusters, which are calculated by the average distance of Pd or Pt atoms from the center of a cluster. The results show that there exists the segregation phenomenon of Pd and Pt atoms in Pd-Pt clusters, i.e., Pd atoms tend to occupy the surface sites, and Pt atoms prefer to occupy the inner core sites. This is explained by the lower surface energy of Pd(125-131 meV-2) than that of Pt(155-159 meV-2).
      通信作者: 吴夏, xiawu@aqnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:21203002,31570417)资助的课题.
      Corresponding author: Wu Xia, xiawu@aqnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant Nos. 21203002, 31570417).
    [1]

    Ferrando R, Jellinek J, Johnston R L 2008 Chem. Rev. 108 845

    [2]

    Baletto F, Mottet C, Ferrando R 2003 Phys. Rev. Lett. 90 135504

    [3]

    Brown J A, Mishin A 2003 Phys. Rev. B 67 195414

    [4]

    Bazin D, Guillaume D, Pichon C, Uzio D, Lopez S 2005 Oil Gas Sci. Technol. 60 801

    [5]

    Stanislaus A, Cooper B H 1994 Catal. Rev.-Sci. Eng. 36 75

    [6]

    Barcaro G, Fortunelli A, Polak M, Rubinovich L 2011 Nano Lett. 11 1766

    [7]

    Paz-Borbón L O, Johnston R L, Barcaro G, Fortunelli A 2007 J. Phys. Chem. C 111 2936

    [8]

    Paz-Borbón L O, Mortimer-Jones T V, Johnston R L, Posada-Amarillas A, Barcaro G, Fortunelli A 2007 Phys. Chem. Chem. Phys. 9 5202

    [9]

    Cheng D J, Huang S P, Wang W C 2006 Chem. Phys. 330 423

    [10]

    Cheng D J, Cao D P 2008 Chem. Phys. Lett. 461 71

    [11]

    Liu T D, Chen J R, Hong W P, Shao G F, Wang T N, Zheng J W, Wen Y H 2013 Acta Phys. Sin. 62 193601(in Chinese)[刘暾东, 陈俊仁, 洪武鹏, 邵桂芳, 王婷娜, 郑骥文, 文玉华2013 62 193601]

    [12]

    Liu T D, Zheng J W, Shao G F, Fan T E, Wen Y H 2015 Chin. Phys. B 24 033601

    [13]

    Deaven D M, Tit N, Morris J R, Ho K M 1996 Chem. Phys. Lett. 256 195

    [14]

    Wales D J, Doye J P K 1997 J. Phys. Chem. A 101 5111

    [15]

    Cai W S, Shao X G 2002 J. Comput. Chem. 23 427

    [16]

    Shao X G, Cheng L J, Cai W S 2004 J. Chem. Phys. 120 11401

    [17]

    Shao X G, Cheng L J, Cai W S 2004 J. Comput. Chem. 25 1693

    [18]

    Johnston R L 2003 J. Chem. Soc. Dalton Trans. 22 4193

    [19]

    Cassioli A, Locatelli M, Schoen F 2009 Optim. Methods Softw. 24 819

    [20]

    Wu X, Cai W S, Shao X G 2009 J. Comput. Chem. 30 1992

    [21]

    Doye J P K, Meyer L 2005 Phys. Rev. Lett. 95 063401

    [22]

    Marques J M C, Pereira F B 2010 Chem. Phys. Lett. 485 211

    [23]

    Ye T, Xu R C, Huang W Q 2011 J. Chem. Inf. Model. 51 572

    [24]

    Rondina G G, Da Silva J L F 2013 J. Chem. Inf. Model. 53 2282

    [25]

    Lai X J, Xu R C, Huang W Q 2011 J. Chem. Phys. 135 164109

    [26]

    Wu X, Cheng W 2014 J. Chem. Phys. 141 124110

    [27]

    Shao X G, Yang X L, Cai W S 2008 Chem. Phys. Lett. 460 315

    [28]

    Shao X G, Wu X, Cai W S 2010 J. Phys. Chem. A 114 12813

    [29]

    Liu D C, Nocedal J 1989 Math. Program. 45 503

    [30]

    Lim B, Wang J G, Camargo P H C, Cobley C M, Kim M J, Xia Y N 2009 Angew. Chem. Int. Ed. 48 6304

    [31]

    Liu H B, Pal U, Medina A, Maldonado C, Ascencio J A 2005 Phys. Rev. B 71 075403

    [32]

    Pittaway F, Paz-Borbon L O, Johnston R L, Arslan H, Ferrando R, Mottet C, Barcaro G, Fortunelli A 2009 J. Phys. Chem. C 113 9141

  • [1]

    Ferrando R, Jellinek J, Johnston R L 2008 Chem. Rev. 108 845

    [2]

    Baletto F, Mottet C, Ferrando R 2003 Phys. Rev. Lett. 90 135504

    [3]

    Brown J A, Mishin A 2003 Phys. Rev. B 67 195414

    [4]

    Bazin D, Guillaume D, Pichon C, Uzio D, Lopez S 2005 Oil Gas Sci. Technol. 60 801

    [5]

    Stanislaus A, Cooper B H 1994 Catal. Rev.-Sci. Eng. 36 75

    [6]

    Barcaro G, Fortunelli A, Polak M, Rubinovich L 2011 Nano Lett. 11 1766

    [7]

    Paz-Borbón L O, Johnston R L, Barcaro G, Fortunelli A 2007 J. Phys. Chem. C 111 2936

    [8]

    Paz-Borbón L O, Mortimer-Jones T V, Johnston R L, Posada-Amarillas A, Barcaro G, Fortunelli A 2007 Phys. Chem. Chem. Phys. 9 5202

    [9]

    Cheng D J, Huang S P, Wang W C 2006 Chem. Phys. 330 423

    [10]

    Cheng D J, Cao D P 2008 Chem. Phys. Lett. 461 71

    [11]

    Liu T D, Chen J R, Hong W P, Shao G F, Wang T N, Zheng J W, Wen Y H 2013 Acta Phys. Sin. 62 193601(in Chinese)[刘暾东, 陈俊仁, 洪武鹏, 邵桂芳, 王婷娜, 郑骥文, 文玉华2013 62 193601]

    [12]

    Liu T D, Zheng J W, Shao G F, Fan T E, Wen Y H 2015 Chin. Phys. B 24 033601

    [13]

    Deaven D M, Tit N, Morris J R, Ho K M 1996 Chem. Phys. Lett. 256 195

    [14]

    Wales D J, Doye J P K 1997 J. Phys. Chem. A 101 5111

    [15]

    Cai W S, Shao X G 2002 J. Comput. Chem. 23 427

    [16]

    Shao X G, Cheng L J, Cai W S 2004 J. Chem. Phys. 120 11401

    [17]

    Shao X G, Cheng L J, Cai W S 2004 J. Comput. Chem. 25 1693

    [18]

    Johnston R L 2003 J. Chem. Soc. Dalton Trans. 22 4193

    [19]

    Cassioli A, Locatelli M, Schoen F 2009 Optim. Methods Softw. 24 819

    [20]

    Wu X, Cai W S, Shao X G 2009 J. Comput. Chem. 30 1992

    [21]

    Doye J P K, Meyer L 2005 Phys. Rev. Lett. 95 063401

    [22]

    Marques J M C, Pereira F B 2010 Chem. Phys. Lett. 485 211

    [23]

    Ye T, Xu R C, Huang W Q 2011 J. Chem. Inf. Model. 51 572

    [24]

    Rondina G G, Da Silva J L F 2013 J. Chem. Inf. Model. 53 2282

    [25]

    Lai X J, Xu R C, Huang W Q 2011 J. Chem. Phys. 135 164109

    [26]

    Wu X, Cheng W 2014 J. Chem. Phys. 141 124110

    [27]

    Shao X G, Yang X L, Cai W S 2008 Chem. Phys. Lett. 460 315

    [28]

    Shao X G, Wu X, Cai W S 2010 J. Phys. Chem. A 114 12813

    [29]

    Liu D C, Nocedal J 1989 Math. Program. 45 503

    [30]

    Lim B, Wang J G, Camargo P H C, Cobley C M, Kim M J, Xia Y N 2009 Angew. Chem. Int. Ed. 48 6304

    [31]

    Liu H B, Pal U, Medina A, Maldonado C, Ascencio J A 2005 Phys. Rev. B 71 075403

    [32]

    Pittaway F, Paz-Borbon L O, Johnston R L, Arslan H, Ferrando R, Mottet C, Barcaro G, Fortunelli A 2009 J. Phys. Chem. C 113 9141

  • [1] 杨建宇, 席昆, 竺立哲. 生物大分子过渡态搜索算法及其中的机器学习.  , 2023, 72(24): 248701. doi: 10.7498/aps.72.20231319
    [2] 姜瑶瑶, 张文彬, 初鹏程, 马鸿洋. 基于置换群的多粒子环上量子行走的反馈搜索算法.  , 2022, 71(3): 030201. doi: 10.7498/aps.71.20211000
    [3] 姜瑶瑶, 张文彬, 初鹏程, 马鸿洋. 基于置换群的多粒子环上量子漫步的反馈搜索算法.  , 2021, (): . doi: 10.7498/aps.70.20211000
    [4] 张仁强, 蒋翔宇, 俞炯弛, 曾充, 宫明, 徐顺. 格点量子色动力学蒸馏算法中关联函数的计算优化.  , 2021, 70(16): 161201. doi: 10.7498/aps.70.20210030
    [5] 张冬晓, 陈志斌, 肖程, 秦梦泽, 吴浩. 基于引力搜索算法的湍流相位屏生成方法.  , 2019, 68(13): 134205. doi: 10.7498/aps.68.20190081
    [6] 吴夏, 魏征. 基于内核构建的Cu-Au-Pd团簇稳定结构优化.  , 2017, 66(15): 150202. doi: 10.7498/aps.66.150202
    [7] 刘艳梅, 陈汉武, 刘志昊, 薛希玲, 朱皖宁. 星图上的散射量子行走搜索算法.  , 2015, 64(1): 010301. doi: 10.7498/aps.64.010301
    [8] 宋丹, 樊晓平, 刘钟理. 一种基于非基因信息的免疫记忆优化算法.  , 2015, 64(14): 140203. doi: 10.7498/aps.64.140203
    [9] 刘暾东, 陈俊仁, 洪武鹏, 邵桂芳, 王婷娜, 郑骥文, 文玉华. 基于粒子群算法的Pt-Pd合金纳米粒子的稳定结构研究.  , 2013, 62(19): 193601. doi: 10.7498/aps.62.193601
    [10] 张水舰, 刘学军, 杨洋. 动态随机最短路径算法研究.  , 2012, 61(16): 160201. doi: 10.7498/aps.61.160201
    [11] 王亚奇, 杨晓元. 一种无线传感器网络簇间拓扑演化模型及其免疫研究.  , 2012, 61(9): 090202. doi: 10.7498/aps.61.090202
    [12] 朱思峰, 刘芳, 柴争义, 戚玉涛, 吴建设. 简谐振子免疫优化算法求解异构无线网络垂直切换判决问题.  , 2012, 61(9): 096401. doi: 10.7498/aps.61.096401
    [13] 柴争义, 郑丽萍, 朱思峰. 混沌免疫算法求解认知无线电网络资源分配问题.  , 2012, 61(11): 118801. doi: 10.7498/aps.61.118801
    [14] 柴争义, 陈亮, 朱思峰. 混沌免疫多目标算法求解认知引擎参数优化问题.  , 2012, 61(5): 058801. doi: 10.7498/aps.61.058801
    [15] 周杰, 俎云霄. 一种用于认知无线电资源分配的并行免疫遗传算法.  , 2010, 59(10): 7508-7515. doi: 10.7498/aps.59.7508
    [16] 鄂箫亮, 段海明. 利用Gupta势结合遗传算法研究ConCu55-n(n=0—55)混合团簇的结构演化及基态能量.  , 2010, 59(8): 5672-5680. doi: 10.7498/aps.59.5672
    [17] 刘世荣, 黄伟其, 秦朝建. 氧化硅层中的锗纳米晶体团簇量子点.  , 2006, 55(5): 2488-2491. doi: 10.7498/aps.55.2488
    [18] 郭建军, 杨继先, 迭 东, 于桂凤, 蒋 刚. Pd-Y微团簇的结构与性质研究.  , 2005, 54(8): 3571-3577. doi: 10.7498/aps.54.3571
    [19] 叶子燕, 张庆瑜. 低能Pt原子团簇沉积过程的分子动力学模拟.  , 2002, 51(12): 2798-2803. doi: 10.7498/aps.51.2798
    [20] 应和平, 董绍静. 耦合常数小于1时SU(2)格点规范理论的质量隙及β函数计算.  , 1988, 37(3): 520-523. doi: 10.7498/aps.37.520
计量
  • 文章访问数:  6799
  • PDF下载量:  244
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-21
  • 修回日期:  2016-07-28
  • 刊出日期:  2016-11-05

/

返回文章
返回
Baidu
map