搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种多用户上行放大转发中继系统中快速收敛的信道估计方法

林和昀 袁超伟 杜建和

引用本文:
Citation:

一种多用户上行放大转发中继系统中快速收敛的信道估计方法

林和昀, 袁超伟, 杜建和

A fast algorithm with convergence for channel estimation in multi-user uplink amplify-and-forward relay system

Lin He-Yun, Yuan Chao-Wei, Du Jian-He
PDF
导出引用
  • 针对传统交替最小二乘算法存在的收敛缓慢问题,本文在多用户上行放大转发中继系统中基于Levenberg Marquardt(LM)算法,提出了一种能够快速收敛的信道估计方法,实现了用户-中继信道和中继-基站信道的独立估计.在基站,通过对中继多次放大转发的信号进行建模,构造出具有平行因子结构的三维信号张量模型,并采用LM算法对该模型进行拟合,从而得到系统中两跳链路的信道状态信息.理论分析与仿真结果表明,与已有二线性交替最小二乘方法相比,所提方法具有近乎相同的估计精度;当中继放大因子矩阵为随机矩阵或者包含近似共线性相关列时,所提方法具有更快的收敛速度.
    Recently,tensor models (or multi-way arrays) play a vital role in many applications,such as wireless communication systems,blind source separation,machine learning,signal (audio,image,speech) processing,chemometrics,data mining, arithmetic complexity,environmental sciences,etc.Parallel factor (PARAFAC) analysis,also known as canonical polyadic decomposition,is a common name for low rank decomposition of tensors.A traditional way to fit the PARAFAC model is the alternating least squares (ALS) algorithm,which can transform a nonlinear optimization problem into some independent linear least squares problems.However,the ALS scheme for computing the decomposition of the tensor is known to converge slowly if one or some modes include nearly collinear columns.Particularly,if the collinearity is presented in all modes,the ALS will end in a convergence bottleneck.Hence,it is necessary to develop a robust and fast algorithm to compute the decomposition of the tensor.In this paper,a novel channel estimation algorithm using the Levenberg Marquardt (LM) method based on a third-order tensor model is presented in a multi-user uplink amplify-and-forward (AF) relay system.As the relay nodes all operate with half-duplex mode to aid the transmission,the overall transmission period is partitioned into two transmission subprocesses.In the first transmission sub-process,the users transmit channel training sequence to the relay nodes.This stage requires time block once.During the second transmission sub-process,a set of diagonal amplifying factor matrices are utilized by the relay nodes to amplify the received data.Then,the relay nodes transmit each of the amplified data to the base station.This stage requires time blocks K times.With the help of the channel training sequence and the relay amplifying factor matrices,the received data at the base station can be stacked up into a third-order PARAFAC model. And then based on this tensor model an LM channel estimation algorithm is proposed to provide the individual channel state information of both user-to-relay and relay-to-base station channel links.As the channel sequence is transmitted by the users only once,the proposed scheme has a higher spectral efficiency than the case that the channel sequence is transmitted K times by the users.Numerical experiments are shown to demonstrate the efficacy of the proposed LM channel estimation algorithm.The results are as follows.Firstly,the LM approach has the same channel estimation performance as the bilinear alternating least-squares method.Secondly,the proposed estimator yields much faster convergence speed when the relay amplifying factor matrix is a random matrix or a highly collinear one.Finally,the proposed scheme performs well in both independent identically distributed channels and correlated channels scenarios,which means that the proposed channel estimator can provide the robust and reliable feature for multi-user uplinks AF relay systems.
      通信作者: 袁超伟, yuancw2000@bupt.edu.cn
    • 基金项目: 国家高技术研究发展计划(批准号:2015AA01A705,2014AA01A701)和中国传媒大学理工科规划项目(批准号:3132016XNG1618)资助的课题.
      Corresponding author: Yuan Chao-Wei, yuancw2000@bupt.edu.cn
    • Funds: Project supported by the National High Technology Research and Development Program of China(Grant Nos. 2015AA01A705, 2014AA01A701) and the Science Project of Communication University of China(Grant No. 3132016XNG1618).
    [1]

    Sanguinetti L, D'Amico A A, Rong Y 2012 IEEE J. Sel. Areas Commun. 30 1331

    [2]

    Hammerstrom I, Wittneben A 2007 IEEE Trans. Wirel. Commun. 6 2798

    [3]

    Rong Y 2010 IEEE Commun. Lett. 14 390

    [4]

    Munoz M O, Vidal J, Agustin A 2007 IEEE Trans. Signal Process 55 2593

    [5]

    Zhou J, Jiang H, Hisakazu K, Shao G F 2014 Acta Phys. Sin. 63 140506(in Chinese)[周杰, 江浩, 菊池久和, 邵根富2014 63 140506]

    [6]

    Ma L, Liu S Z, Qiao G 2015 Acta Phys. Sin. 64 154304(in Chinese)[马璐, 刘凇佐, 乔钢2015 64 154304]

    [7]

    Sidiropoulos N D, Giannakis G B, Bro R 2000 IEEE Trans. Signal Process 48 810

    [8]

    Kruskal J B 1977 Linear Algebra. Appl. 18 95

    [9]

    Xiao H L, Ouyang S, Nie Z P 2009 Acta Phys. Sin. 58 3685(in Chinese)[肖海林, 欧阳缮, 聂在平2009 58 3685]

    [10]

    de Almeida A L F, Fernandes C A, Da Costa D 2013 IEEE Signal Process. Lett. 20 697

    [11]

    Du J H, Yuan C W, Hu Z W, Lin H Y 2015 IEEE Commun. Lett. 19 1961

    [12]

    Rong Y, Khandaker M R, Xiang Y 2012 IEEE Trans. Wirel. Commun. 11 2224

    [13]

    Du J H, Yuan C W, Zhang J B 2015 IET Commun. 9 737

    [14]

    De Almeida A L F, Favier G, Ximenes L R 2013 IEEE Trans. Signal Process 61 1895

    [15]

    Marquardt D 1963 SIAM J. Appl. Math. 11 431

    [16]

    Nion D, De Lathauwer L 2008 IEEE Trans. Signal Process 56 5567

    [17]

    Tomasi G, Bro R 2006 Comp. Stat. Data Anal. 50 1700

    [18]

    Madsen K, Nielsen H B, Tingleff O 2016 IET Commun. 10 995

    [19]

    Ximenes L R, Favier G, De Almeida A L F, Silva Y C 2014 IEEE Trans. Signal Process 62 3604

    [20]

    Shiu D, Foschini G, Gans M J, Kahn J 2000 IEEE Trans. Commun. 48 502

  • [1]

    Sanguinetti L, D'Amico A A, Rong Y 2012 IEEE J. Sel. Areas Commun. 30 1331

    [2]

    Hammerstrom I, Wittneben A 2007 IEEE Trans. Wirel. Commun. 6 2798

    [3]

    Rong Y 2010 IEEE Commun. Lett. 14 390

    [4]

    Munoz M O, Vidal J, Agustin A 2007 IEEE Trans. Signal Process 55 2593

    [5]

    Zhou J, Jiang H, Hisakazu K, Shao G F 2014 Acta Phys. Sin. 63 140506(in Chinese)[周杰, 江浩, 菊池久和, 邵根富2014 63 140506]

    [6]

    Ma L, Liu S Z, Qiao G 2015 Acta Phys. Sin. 64 154304(in Chinese)[马璐, 刘凇佐, 乔钢2015 64 154304]

    [7]

    Sidiropoulos N D, Giannakis G B, Bro R 2000 IEEE Trans. Signal Process 48 810

    [8]

    Kruskal J B 1977 Linear Algebra. Appl. 18 95

    [9]

    Xiao H L, Ouyang S, Nie Z P 2009 Acta Phys. Sin. 58 3685(in Chinese)[肖海林, 欧阳缮, 聂在平2009 58 3685]

    [10]

    de Almeida A L F, Fernandes C A, Da Costa D 2013 IEEE Signal Process. Lett. 20 697

    [11]

    Du J H, Yuan C W, Hu Z W, Lin H Y 2015 IEEE Commun. Lett. 19 1961

    [12]

    Rong Y, Khandaker M R, Xiang Y 2012 IEEE Trans. Wirel. Commun. 11 2224

    [13]

    Du J H, Yuan C W, Zhang J B 2015 IET Commun. 9 737

    [14]

    De Almeida A L F, Favier G, Ximenes L R 2013 IEEE Trans. Signal Process 61 1895

    [15]

    Marquardt D 1963 SIAM J. Appl. Math. 11 431

    [16]

    Nion D, De Lathauwer L 2008 IEEE Trans. Signal Process 56 5567

    [17]

    Tomasi G, Bro R 2006 Comp. Stat. Data Anal. 50 1700

    [18]

    Madsen K, Nielsen H B, Tingleff O 2016 IET Commun. 10 995

    [19]

    Ximenes L R, Favier G, De Almeida A L F, Silva Y C 2014 IEEE Trans. Signal Process 62 3604

    [20]

    Shiu D, Foschini G, Gans M J, Kahn J 2000 IEEE Trans. Commun. 48 502

  • [1] 曹海燕, 叶震宇. 基于压缩感知理论的大规模MIMO系统下行信道估计中的导频优化理论分析与算法设计.  , 2022, 71(5): 050101. doi: 10.7498/aps.71.20211504
    [2] 曹海燕, 叶震宇. 基于压缩感知理论的大规模MIMO系统下行信道估计中的导频优化理论分析与算法设计.  , 2021, (): . doi: 10.7498/aps.70.20211504
    [3] 王秀娟, 李生好. 基于U(1)对称的无限矩阵乘积态张量网络算法提取Luttinger液体参数K .  , 2019, 68(16): 160201. doi: 10.7498/aps.68.20190379
    [4] 院琳, 杨雪松, 王秉中. 基于经验知识遗传算法优化的神经网络模型实现时间反演信道预测.  , 2019, 68(17): 170503. doi: 10.7498/aps.68.20190327
    [5] 冷雪冬, 巴斌, 逯志宇, 王大鸣. 基于回溯筛选的稀疏重构时延估计算法.  , 2016, 65(21): 210701. doi: 10.7498/aps.65.210701
    [6] 陈典兵, 朱明, 高文, 王慧利, 杨航. 基于残差矩阵估计的稀疏表示目标跟踪算法.  , 2016, 65(19): 194201. doi: 10.7498/aps.65.194201
    [7] 杨光, 廉保旺, 聂敏. 多跳噪声量子纠缠信道特性及最佳中继协议.  , 2015, 64(24): 240304. doi: 10.7498/aps.64.240304
    [8] 尹艳玲, 乔钢, 刘凇佐, 周锋. 基于基追踪去噪的水声正交频分复用稀疏信道估计.  , 2015, 64(6): 064301. doi: 10.7498/aps.64.064301
    [9] 郝晓辰, 姚宁, 汝小月, 刘伟静, 辛敏洁. 基于生命期模型的无线传感器网络信道分配博弈算法.  , 2015, 64(14): 140101. doi: 10.7498/aps.64.140101
    [10] 马璐, 刘凇佐, 乔钢. 水声正交频分多址上行通信稀疏信道估计与导频优化.  , 2015, 64(15): 154304. doi: 10.7498/aps.64.154304
    [11] 周杰, 王亚林, 菊池久和. 多天线信道空间衰落相关性近似算法及其复杂性研究.  , 2014, 63(23): 230205. doi: 10.7498/aps.63.230205
    [12] 郑羽, 赵宣, 李静, 付孝洪, 王金海, 李红志, 刘宁. 深海走航抛弃式测量仪器时变信道对传输性能的影响.  , 2014, 63(4): 040507. doi: 10.7498/aps.63.040507
    [13] 张歆, 张小蓟, 邢晓飞, 姜丽伟. 单载波频域均衡中的水声信道频域响应与噪声估计.  , 2014, 63(19): 194304. doi: 10.7498/aps.63.194304
    [14] 刘允, 彭启琮, 邵怀宗, 彭启航, 王玲. 一种基于授权信道特性的认知无线电频谱检测算法.  , 2013, 62(7): 078406. doi: 10.7498/aps.62.078406
    [15] 薛乐, 聂敏, 刘晓慧. 量子信令中继器模型及性能仿真.  , 2013, 62(17): 170305. doi: 10.7498/aps.62.170305
    [16] 龙文, 焦建军. 基于混合交叉进化算法的混沌系统参数估计.  , 2012, 61(11): 110507. doi: 10.7498/aps.61.110507
    [17] 朱畅华, 陈南, 裴昌幸, 权东晓, 易运晖. 基于信道估计的自适应连续变量量子密钥分发方法.  , 2009, 58(4): 2184-2188. doi: 10.7498/aps.58.2184
    [18] 吴加贵, 吴正茂, 林晓东, 张 毅, 钟东洲, 夏光琼. 双信道光混沌通信系统的理论模型及性能研究.  , 2005, 54(9): 4169-4175. doi: 10.7498/aps.54.4169
    [19] 陈小余. 单模费米热噪声信道量子容量的估计.  , 2001, 50(7): 1217-1220. doi: 10.7498/aps.50.1217
    [20] 张元仲, 郭汉英. 关于矢量-张量引力相互作用模型.  , 1982, 31(11): 1554-1557. doi: 10.7498/aps.31.1554
计量
  • 文章访问数:  6029
  • PDF下载量:  264
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-21
  • 修回日期:  2016-07-27
  • 刊出日期:  2016-11-05

/

返回文章
返回
Baidu
map