搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大地土壤表面与浅埋多目标宽带复合电磁散射研究

任新成 朱小敏 刘鹏

引用本文:
Citation:

大地土壤表面与浅埋多目标宽带复合电磁散射研究

任新成, 朱小敏, 刘鹏

Wide-band composite electromagnetic scattering from the earth soil surface and multiple targets shallowly buried

Ren Xin-Cheng, Zhu Xiao-Min, Liu Peng
PDF
导出引用
  • 为了满足浅埋于粗糙面下方多目标测量和检测的需要,采用土水混合物介电常数的Topp方程模型表示大地土壤的介电特性,应用指数型分布粗糙面和Monte Carlo方法模拟大地土壤表面,运用时域有限差分方法研究大地土壤表面与浅埋多目标的宽带复合电磁散射,得出了复合散射系数的频率响应曲线.结果表明,复合散射系数随频率振荡地变化;随土壤表面均方根、土壤含水率、目标截面高度和间距的增大而增大,随目标截面宽度的增大而减小;随电磁波入射角的变化较大且较为复杂;随土壤表面相关长度、目标埋藏深度、目标介电参数的变化较小但较为复杂.与其他数值计算方法相比较,采用时域有限差分方法既可获得较高的准确性,同时又可减少计算时间和内存占用量,而且可以计算地、海粗糙面与附近任意多目标的宽带复合散射.
    Wide-band electromagnetic scattering from multiple objects shallowly buried beneath rough earth soil surfaces has been an important research topic in recent years because of its extensive applications in detecting the buried objects such as mines, pipes, and tunnels. Due to the advantages of finite-difference time-domain (FDTD) method in simulating wide-band electromagnetic scattering from rough surface in the presence of multiple objects, the FDTD method under Gaussian differential pulse wave incidence is utilized in the present study to analyze the frequency response of rough soil surfaces with shallowly buried objects, which serves as a basis for the detection and discrimination of objects buried below rough soil surfaces. The Topp equation model that can predict the dielectric constant of soil-water mixture is adopted in the present study to properly describe the dielectric property of earth soil with water. The actual rough land surface is modeled as the realization of a Gaussian random process with exponential spectrum by using Monte Carlo method. Simulation results show that the variation of composite scattering coefficient with frequency is oscillatory. It is also shown that the composite scattering coefficient versus frequency increases with the increase of root-mean-square of soil surface, water ratio of soil, the target section height, and the separation distance of target. However, simulation results indicate that the composite scattering coefficient versus frequency decreases with the increase of target section width. In summary, the variation of wide-band scattering coefficient is very complicated and is very sensitive to the incidence angle of electromagnetic wave. However, the wide-band scattering coefficient under Gaussian differential pulse wave incidence is less sensitive to the correlation length of rough soil surface, the depth of buried objects, and the dielectric constant of target. These qualitative results relating to the frequency response of rough soil surfaces in the presence of multiple objects are potentially valuable for detecting and discriminating the objects buried below rough soil surfaces by utilizing a wide-band ground penetrating radar system, although the present study is limited to one-dimensional rough soil surface due to the severe computational burden encountered in the large-scale Monte Carlo simulations. In addition, compared with frequency-domain numerical methods, the FDTD method has significant advantages in calculating wide-band composite scattering from rough surfaces in the presence of multiple objects, and thus has extensive applications in radar imaging simulation of multiple objects below or above rough surfaces, which goes beyond the scope of this paper.
      通信作者: 任新成, xchren@yau.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61379026)、陕西省科学技术研究发展计划(工业攻关)(批准号:2014K05-61)、陕西省高水平大学建设专项资金(批准号:2015SXTS02)和复旦大学电磁波信息科学教育部重点实验室开放基金(批准号:EMW201502)资助的课题.
      Corresponding author: Ren Xin-Cheng, xchren@yau.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61379026), the Science and Technology Research and Development Program Project in Shaanxi Province (Industrial Research), China (Grant No. 2014K05-61), the Foundation of Construction of High-level University Project in Shaanxi Province, China (Grant No. 2015SXTS02), and the Open Foundation of Fudan University Key Laboratory for Information Science of Electromagnetic Waves (MoE), China (Grant No. EMW201502).
    [1]

    Nasr M A, Eshrah I A, Hashish E A 2014 IEEE Trans. Antennas Propag. 62 2702

    [2]

    Bellez S, Bourlier C, Kubicke G 2015 IEEE Trans. Antennas Propag. 63 5003

    [3]

    Rashidi-Ranjbar E, Dehmollaian M 2015 IEEE Geosci. Remote Sens. Lett. 12 1481

    [4]

    Altuncu Y 2015 IEEE Trans. Antennas Propag. 63 3634

    [5]

    Xu X K 2010 IEEE Trans. Antennas Propag. 58 1425

    [6]

    Tao R, Li Y, Bai X, Waheed A 2012 IEEE Trans. Geosci. Remote Sens. 50 3627

    [7]

    Li N, Zhang M, Nie D, Sun R Q 2015 Wave Random Complex 25 1

    [8]

    Li J, Guo L X 2015 Wave Random Complex 25 60

    [9]

    Jia C G, Guo L X, Yang P J 2015 IEEE Antennas Wirel. Propag. Lett. 14 217

    [10]

    Guo L X, Xu R W 2015 IEEE Trans. Geosci. Remote Sens. 53 3885

    [11]

    Liang Y, Guo L X, Wu Z S, Liu Q H 2016 IEEE Antennas Wirel. Propag. Lett. 15 186

    [12]

    Tian W, Ren X C, Guo L X 2015 Acta Phys. Sin. 64 174101 (in Chinese)[田炜, 任新成, 郭立新2015 64 174101]

    [13]

    Zhu X M, Ren X C, Guo L X 2014 Acta Phys. Sin. 63 054101 (in Chinese)[朱小敏, 任新成, 郭立新2014 63 054101]

    [14]

    Xu R W, Guo L X, Wang R 2014 Chin. Phys. B 23 114101

    [15]

    Zhang H H, Ding D Z, Fan Z H, Chen R S 2015 IEEE Antennas Wirel. Propag. Lett. 14 579

    [16]

    Pan X M, Sheng X Q 2015 IEEE Trans. Antennas Propag. 62 4304

    [17]

    Topp G C, Davis J L, Annan A P 1980 Water Retour. Res. 16 574

    [18]

    Yang G D, Du Y 2014 IEEE Trans. Geosci. Remote Sens. 52 2607

    [19]

    Ge D B, Yan Y B 2011 Finite-Difference Time-Domain Method for Electromagnetic Waves (Third Edition) (Xi'an:Xidian University Press) (in Chinese)[葛德彪, 闫玉波2011电磁波时域有限差分方法(第三版)(西安:西安电子科技大学出版社)]

    [20]

    Khankhoje U K, Burgin M, Moghaddam M 2014 IEEE Geosci. Remote Sens. Lett. 11 1345

    [21]

    Chen K S, Tsang L, Chen K L, Liao T H, Lee J S 2014 IEEE Trans. Geosci. Remote Sens. 52 7048

    [22]

    Ramasamy S, Moghtaderi B 2010 Energy Fuels 24 4534

    [23]

    Hollertz R, Arwin H, Faure B, Zhang Y, Bergström L, Wagberg L 2013 Cellulose 20 1639

    [24]

    Kol S H 2009 Bioresources 4 1663

  • [1]

    Nasr M A, Eshrah I A, Hashish E A 2014 IEEE Trans. Antennas Propag. 62 2702

    [2]

    Bellez S, Bourlier C, Kubicke G 2015 IEEE Trans. Antennas Propag. 63 5003

    [3]

    Rashidi-Ranjbar E, Dehmollaian M 2015 IEEE Geosci. Remote Sens. Lett. 12 1481

    [4]

    Altuncu Y 2015 IEEE Trans. Antennas Propag. 63 3634

    [5]

    Xu X K 2010 IEEE Trans. Antennas Propag. 58 1425

    [6]

    Tao R, Li Y, Bai X, Waheed A 2012 IEEE Trans. Geosci. Remote Sens. 50 3627

    [7]

    Li N, Zhang M, Nie D, Sun R Q 2015 Wave Random Complex 25 1

    [8]

    Li J, Guo L X 2015 Wave Random Complex 25 60

    [9]

    Jia C G, Guo L X, Yang P J 2015 IEEE Antennas Wirel. Propag. Lett. 14 217

    [10]

    Guo L X, Xu R W 2015 IEEE Trans. Geosci. Remote Sens. 53 3885

    [11]

    Liang Y, Guo L X, Wu Z S, Liu Q H 2016 IEEE Antennas Wirel. Propag. Lett. 15 186

    [12]

    Tian W, Ren X C, Guo L X 2015 Acta Phys. Sin. 64 174101 (in Chinese)[田炜, 任新成, 郭立新2015 64 174101]

    [13]

    Zhu X M, Ren X C, Guo L X 2014 Acta Phys. Sin. 63 054101 (in Chinese)[朱小敏, 任新成, 郭立新2014 63 054101]

    [14]

    Xu R W, Guo L X, Wang R 2014 Chin. Phys. B 23 114101

    [15]

    Zhang H H, Ding D Z, Fan Z H, Chen R S 2015 IEEE Antennas Wirel. Propag. Lett. 14 579

    [16]

    Pan X M, Sheng X Q 2015 IEEE Trans. Antennas Propag. 62 4304

    [17]

    Topp G C, Davis J L, Annan A P 1980 Water Retour. Res. 16 574

    [18]

    Yang G D, Du Y 2014 IEEE Trans. Geosci. Remote Sens. 52 2607

    [19]

    Ge D B, Yan Y B 2011 Finite-Difference Time-Domain Method for Electromagnetic Waves (Third Edition) (Xi'an:Xidian University Press) (in Chinese)[葛德彪, 闫玉波2011电磁波时域有限差分方法(第三版)(西安:西安电子科技大学出版社)]

    [20]

    Khankhoje U K, Burgin M, Moghaddam M 2014 IEEE Geosci. Remote Sens. Lett. 11 1345

    [21]

    Chen K S, Tsang L, Chen K L, Liao T H, Lee J S 2014 IEEE Trans. Geosci. Remote Sens. 52 7048

    [22]

    Ramasamy S, Moghtaderi B 2010 Energy Fuels 24 4534

    [23]

    Hollertz R, Arwin H, Faure B, Zhang Y, Bergström L, Wagberg L 2013 Cellulose 20 1639

    [24]

    Kol S H 2009 Bioresources 4 1663

  • [1] 杨利霞, 刘超, 李清亮, 闫玉波. 斜入射非线性电离层Langmuir扰动的电磁波传播特性.  , 2022, 71(6): 064101. doi: 10.7498/aps.71.20211204
    [2] 叶志红, 张杰, 周健健, 苟丹. 有耗介质层上多导体传输线的电磁耦合时域分析方法.  , 2020, 69(6): 060701. doi: 10.7498/aps.69.20191214
    [3] 李冰, 马萌晨, 雷明珠. 粗糙海面与其上方多目标复合散射的混合算法.  , 2017, 66(5): 050301. doi: 10.7498/aps.66.050301
    [4] 王飞, 魏兵, 杨谦, 李林茜. 基于Newmark算法的任意磁化方向铁氧体电磁散射时域有限差分分析.  , 2014, 63(16): 164101. doi: 10.7498/aps.63.164101
    [5] 王飞, 魏兵, 李林茜. 色散介质电磁特性时域有限差分分析的Newmark方法.  , 2014, 63(10): 104101. doi: 10.7498/aps.63.104101
    [6] 杨利霞, 沈丹华, 施卫东. 三维时变等离子体目标的电磁散射特性研究.  , 2013, 62(10): 104101. doi: 10.7498/aps.62.104101
    [7] 王飞, 魏兵. 电各向异性色散介质电磁散射时域有限差分分析的半解析递推卷积方法.  , 2013, 62(4): 044101. doi: 10.7498/aps.62.044101
    [8] 王飞, 魏兵. 任意磁化方向铁氧体电磁散射时域有限差分分析的Z变换方法.  , 2013, 62(8): 084106. doi: 10.7498/aps.62.084106
    [9] 杨利霞, 马辉, 施卫东, 施丽娟, 于萍萍. 基于表面阻抗边界条件的等离子体薄涂层电磁散射的时域有限差分分析.  , 2013, 62(3): 034102. doi: 10.7498/aps.62.034102
    [10] 丛超, 吴大建, 刘晓峻, 李勃. 金银三层纳米管局域表面等离激元共振特性研究.  , 2012, 61(3): 037301. doi: 10.7498/aps.61.037301
    [11] 丛超, 吴大建, 刘晓峻. 椭圆截面金纳米管的局域表面等离激元共振特性研究.  , 2011, 60(4): 046102. doi: 10.7498/aps.60.046102
    [12] 胡海峰, 蔡利康, 白文理, 张晶, 王立娜, 宋国峰. 基于表面等离子体的太赫兹光束方向调控的模拟研究.  , 2011, 60(1): 014220. doi: 10.7498/aps.60.014220
    [13] 杨利霞, 谢应涛, 孔娃, 于萍萍, 王刚. 斜入射分层线性各向异性等离子体电磁散射时域有限差分方法分析.  , 2010, 59(9): 6089-6095. doi: 10.7498/aps.59.6089
    [14] 魏 兵, 葛德彪, 王 飞. 一种处理色散介质问题的通用时域有限差分方法.  , 2008, 57(10): 6290-6297. doi: 10.7498/aps.57.6290
    [15] 杨利霞, 葛德彪, 赵跃华, 王 刚, 阎 述. 基于直接离散方式的磁化铁氧体材料电磁散射的时域有限差分方法分析.  , 2008, 57(5): 2936-2940. doi: 10.7498/aps.57.2936
    [16] 杨利霞, 葛德彪, 魏 兵. 电各向异性色散介质电磁散射的三维递推卷积-时域有限差分方法分析.  , 2007, 56(8): 4509-4514. doi: 10.7498/aps.56.4509
    [17] 杨利霞, 葛德彪, 王 刚, 阎 述. 磁化铁氧体材料电磁散射递推卷积-时域有限差分方法分析.  , 2007, 56(12): 6937-6944. doi: 10.7498/aps.56.6937
    [18] 徐利军, 刘少斌, 莫锦军, 袁乃昌. 各向异性磁化等离子体涂敷三维导体目标FDTD分析.  , 2006, 55(7): 3470-3474. doi: 10.7498/aps.55.3470
    [19] 杨利霞, 葛德彪. 磁各向异性色散介质散射的Padé时域有限差分方法分析.  , 2006, 55(4): 1751-1758. doi: 10.7498/aps.55.1751
    [20] 徐利军, 刘少斌, 袁乃昌. 用FDTD计算各向异性磁化等离子体涂敷二维目标的RCS.  , 2005, 54(10): 4789-4793. doi: 10.7498/aps.54.4789
计量
  • 文章访问数:  5418
  • PDF下载量:  190
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-15
  • 修回日期:  2016-07-22
  • 刊出日期:  2016-10-05

/

返回文章
返回
Baidu
map