-
本文利用旋涂技术在氧化铟锡塑料衬底上,制备了硅烷偶联剂(-氨丙基三乙氧基硅烷)-氧化石墨烯固态电解质;以此固态电解质作为栅介质,进一步研究了双侧栅耦合电场质子/电子杂化氧化铟锌薄膜晶体管的电学特性. 研究发现-氨丙基三乙氧基硅烷-氧化石墨烯固态电解质的双电层电容和质子电导率分别高达2.03 F/cm2和6.9910-3 S/cm;由于-氨丙基三乙氧基硅烷-氧化石墨烯复合固态电解质具有较大的双电层电容和质子电导率,利用其作为栅介质的质子/电子杂化氧化铟锌薄膜晶体管功耗低(其工作电压仅为约2 V),其开关比和场效应迁移率分别为1.23107和24.72 cm2/(Vs). 由于-氨丙基三乙氧基硅烷-氧化石墨烯固态电解质的电容耦合作用,氧化铟锌薄膜晶体管在双侧栅电压刺激下,可有效地调控器件的阈值电压、亚阈值摆幅和场效应迁移率,并可实现与门逻辑运算功能.
-
关键词:
- KH550-GO复合固态电解质 /
- 双电层效应 /
- 质子导体膜 /
- 电容耦合
Low-voltage electric-double-layer oxide-based thin-film transistors are of great prospect and investigative value in the fields of micro multi-state memory devices, detectors, electrochemical sensors, and biological synapses simulation, and so on. In addition, low-voltage electric-double-layer oxide-based thin-film transistors have increasingly attracted attention among researchers due to the characteristics of high mobility, high visible light transmittance and low temperature preparation. Currently, the researches about low-voltage electric-double-layer oxide-based thin-film transistors are broadly divided into two aspects. On the one hand, the researches focus on ZnO as a channel layer, source and drain electrode materials, then gradually develop into In, Sn and Ga oxides as well as complex oxides containing these elements, which has made tremendous progress. On the other hand, the development and research of the gate dielectric materials have received more attention. It is found that by adopting an organic/inorganic proton conductor film as the gate dielectric of low-voltage electric-double-layer oxide-based thin-film transistors, the protons in the gate dielectric will move in the direction away from gate, and finally accumulate on the surface of gate dielectric layer close to the channel layer, with the positive bias applied to the gate. In conclusion, though the researches about low-voltage electricdouble- layer oxide-based thin-film transistors have already made great progress, further explorations and investigations are necessary from its wide applications. Consequently, the development of new material architecture of low-voltage electric-double-layer oxide-based thin-film transistor is one way to achieve this goal. Silane coupling agents (3-triethoxysilylpropyla-mine)-graphene oxide (KH550-GO) solid electrolyte is prepared on plastic substrate by spin coating process. The electrical performances of dual in-plane-gate coupled protonic/electronic hybrid IZO thin film transistor gated by KH550-GO solid electrolyte are further studied. The results indicate that the electric-double-layer capacitance and proton conductivity of KH550-GO solid electrolyte respectively achieve 2.03 F/cm2 and 6.9910-3 S/cm, respectively. Due to high electric-double-layer capacitance and proton conductivity, protonic/electronic hybrid IZO thin film transistor gated by KH550-GO solid electrolyte has lower power consumption (its operation voltage ~2 V). Current on/off ratio of 1.23107 and field-effect mobility of 24.72 cm2/(Vs) are shown in the device. Due to the capacitive coupling effect of KH550-GO solid electrolyte, the device with the stimulus of dual in-plane-gate voltage, can effectively modulate the threshold voltage, the subthreshold swing and the field-effect mobility, and demonstrate AND logic operation successfully. Dual in-plane-gate coupled protonic/electronic hybrid IZO thin film transistors prepared in this paper have potential applications in the field of biosensors and artificial synapses.-
Keywords:
- KH550-GO solid electrolyte /
- electric-double-layer effect /
- proton conductor film /
- capacitive coupling
[1] Guo L Q, Wan C J, Zhu L Q, Wan Q 2013 Appl. Phys. Lett. 103 113503
[2] Guo D, Zhou M, Zhang X A, Xu C, Jiang J, Gao F, Wan Q, Li Q H, Wang T H 2013 Anal. Chim. Acta 773 83
[3] Kim K, Chen L C, Truong Q Y, Shen A M, Chen Y 2013 Adv. Mater. 25 1693
[4] Gkoupidenis P, Scaefer N, Strakosas X, Fairfield J A, G G Malliaras 2015 Appl. Phys. Lett. 107 263302
[5] Guo L Q, Yang Y Y, Zhu L Q, Wu G D, Zhou J M 2013 AIP Adv. 3 072110
[6] Fortunato E, Barquinha P, Pimentel A, Goncalves A, Marques A, Martins R, Pereira L 2004 Appl. Phys. Lett. 85 2541
[7] Zhao K S, Xuan R J, Han X, Zhang G M 2012 Acta Phys. Sin. 61 197201 (in Chinese) [赵孔胜, 轩瑞杰, 韩笑, 张耕铭 2012 61 197201]
[8] Chong E, Kim S H, Cho E A, Jang G E, Lee S Y 2011 Curr. Appl. Phys. 11 S132
[9] Chen A H, Tao H, Zhang H Z, Liang L Y, Zhang H Z, iang L Y, Liu M Z, Yu Z, Wan Q 2010 Microelectron. Eng. 87 2019
[10] Zhang H Z, Cao H T, Chen A H, Liang L Y, Liu M Z, Yu Z, Wan Q 2010 Solid State Electrn. 54 479
[11] Lee S, Park H, Paine D C 2012 Thin Solid Films 520 3769
[12] Kergoat L, Herlogsson L, Braga D, Piro B, Pham M C, Crispin X, Berggren M, Horowitz G 2010 Adv. Mater. 22 2565
[13] Zhou B, Sun J, Han X, Jiang J, Wan Q 2011 IEEE Electron. Dev. Lett. 32 1549
[14] Matthew J P, Frisbie C D 2007 J. Am. Chem. Soc. 129 6599
[15] Herlogsson L, Crispin X, Robinson N D, Sandberg M, Hagel O J, Gustafsson G, Berggren M 2007 Adv. Mater. 19 97
[16] Kim S H, Yang S Y, Shin K, Jeon H, Lee J W, Hong K P, Park C E 2006 Appl. Phys. Lett. 89 183516
[17] Larsson O, Said E, Burggren M, Crispin X 2009 Adv. Funct. Mater. 19 3334
[18] Zhu D M, Men C L, Cao M, Wu G D 2013 Acta Phys. Sin. 62 117305 (in Chinese) [朱德明, 门传玲, 曹敏, 吴国栋 2013 62 117305]
[19] Wee G, Larsson O, Srinivasan M, Berggren M, Crispin X, Mhaisalkar S 2010 Adv. Funct. Mater. 20 4344
[20] Jiang J, Sun J, Dou W, Zhou B, Wan Q 2011 Appl. Phys. Lett. 99 193502
[21] Guo L Q, Huang Y K, Shi Y Y, Cheng G G, Ding J N 2015 J. Phys. D: Appl. Phys. 48 285103
[22] Liu S, Tian J Q, Wang L, Luo Y L, Lua W B, Sun X B 2011 Biosens. Bioelectron. 26 4491
-
[1] Guo L Q, Wan C J, Zhu L Q, Wan Q 2013 Appl. Phys. Lett. 103 113503
[2] Guo D, Zhou M, Zhang X A, Xu C, Jiang J, Gao F, Wan Q, Li Q H, Wang T H 2013 Anal. Chim. Acta 773 83
[3] Kim K, Chen L C, Truong Q Y, Shen A M, Chen Y 2013 Adv. Mater. 25 1693
[4] Gkoupidenis P, Scaefer N, Strakosas X, Fairfield J A, G G Malliaras 2015 Appl. Phys. Lett. 107 263302
[5] Guo L Q, Yang Y Y, Zhu L Q, Wu G D, Zhou J M 2013 AIP Adv. 3 072110
[6] Fortunato E, Barquinha P, Pimentel A, Goncalves A, Marques A, Martins R, Pereira L 2004 Appl. Phys. Lett. 85 2541
[7] Zhao K S, Xuan R J, Han X, Zhang G M 2012 Acta Phys. Sin. 61 197201 (in Chinese) [赵孔胜, 轩瑞杰, 韩笑, 张耕铭 2012 61 197201]
[8] Chong E, Kim S H, Cho E A, Jang G E, Lee S Y 2011 Curr. Appl. Phys. 11 S132
[9] Chen A H, Tao H, Zhang H Z, Liang L Y, Zhang H Z, iang L Y, Liu M Z, Yu Z, Wan Q 2010 Microelectron. Eng. 87 2019
[10] Zhang H Z, Cao H T, Chen A H, Liang L Y, Liu M Z, Yu Z, Wan Q 2010 Solid State Electrn. 54 479
[11] Lee S, Park H, Paine D C 2012 Thin Solid Films 520 3769
[12] Kergoat L, Herlogsson L, Braga D, Piro B, Pham M C, Crispin X, Berggren M, Horowitz G 2010 Adv. Mater. 22 2565
[13] Zhou B, Sun J, Han X, Jiang J, Wan Q 2011 IEEE Electron. Dev. Lett. 32 1549
[14] Matthew J P, Frisbie C D 2007 J. Am. Chem. Soc. 129 6599
[15] Herlogsson L, Crispin X, Robinson N D, Sandberg M, Hagel O J, Gustafsson G, Berggren M 2007 Adv. Mater. 19 97
[16] Kim S H, Yang S Y, Shin K, Jeon H, Lee J W, Hong K P, Park C E 2006 Appl. Phys. Lett. 89 183516
[17] Larsson O, Said E, Burggren M, Crispin X 2009 Adv. Funct. Mater. 19 3334
[18] Zhu D M, Men C L, Cao M, Wu G D 2013 Acta Phys. Sin. 62 117305 (in Chinese) [朱德明, 门传玲, 曹敏, 吴国栋 2013 62 117305]
[19] Wee G, Larsson O, Srinivasan M, Berggren M, Crispin X, Mhaisalkar S 2010 Adv. Funct. Mater. 20 4344
[20] Jiang J, Sun J, Dou W, Zhou B, Wan Q 2011 Appl. Phys. Lett. 99 193502
[21] Guo L Q, Huang Y K, Shi Y Y, Cheng G G, Ding J N 2015 J. Phys. D: Appl. Phys. 48 285103
[22] Liu S, Tian J Q, Wang L, Luo Y L, Lua W B, Sun X B 2011 Biosens. Bioelectron. 26 4491
计量
- 文章访问数: 6838
- PDF下载量: 199
- 被引次数: 0