搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

条纹变像管时间畸变的分析

惠丹丹 田进寿 卢裕 王俊锋 温文龙 梁玲亮 陈琳

引用本文:
Citation:

条纹变像管时间畸变的分析

惠丹丹, 田进寿, 卢裕, 王俊锋, 温文龙, 梁玲亮, 陈琳

Temporal distortion analysis of the streak tube

Hui Dan-Dan, Tian Jin-Shou, Lu Yu, Wang Jun-Feng, Wen Wen-Long, Liang Ling-Liang, Chen Lin
PDF
导出引用
  • 应用于惯性约束核聚变和非扫描式激光雷达等的条纹变像管要求具有较大的探测面积,条纹变像管的探测面积越大,其时间畸变就越大,从而影响条纹相机的探测精度,且会导致荧光屏上成像畸变. 本文计算了条纹变像管内部的电场分布,并追踪电子运行轨迹,对条纹变像管的时间畸变进行了分析. 结果表明:造成条纹变像管时间畸变较大的区域是阴极到偏转板前的部分;其主要影响因素是阴极曲率半径,且阴极曲率半径存在一个最佳值使得条纹变像管的时间畸变最小,大于该最佳值,条纹变像管会产生正的时间畸变,反之,条纹变像管会产生负的时间畸变;时间畸变的绝对值随着光电子从阴极发射的初始高度的增大而增大;光电子初始能量对条纹变像管的时间畸变的影响很小. 同时,模拟了不同阴极曲率半径下由于时间畸变不同导致的动态扫描狭缝像的弯曲情况,时间畸变越小,狭缝像弯曲程度越小.
    Streak cameras applied to inertial confinement fusion research and flashless imaging lidar require large working areas. However, the larger the working area, the bigger the temporal distortion is. And the temporal distortion has a great influence on the detecting precision of the streak camera, resulting in an image distortion on the screen. Yet previous streak camera design work emphasized shorter time resolution and higher special resolution with paying less attention to the temporal distortion extent. Key factors that may affect the temporal distortion are thoroughly analyzed in this paper. We calculate the electric field of a small-size streak tube with the aid of the Computer Simulation Technology Particle Studio software which is a three-dimensional electromagnetic simulation software based on finite integration technology. Axial electric field distributions at different distances to the axis of the small-size streak tube are displayed. The electron trajectories launched from different points on photocathode of the streak tube are tracked through interpolating pre-calculated electromagnetic field to the particle position. It is known that curved photocathode can reduce the temporal distortion, so we calculate the temporal distortions of streak tubes whose radii of curvature of the photocathode are 30 mm, 35 mm, 40 mm, 45 mm, 50 mm, and 55 mm respectively to ascertain how the curvature influences the temporal distortion. The results show that the temporal distortion is mainly produced in the photocathode-to-deflector region, and it is negligible in the equipotential region. Also, bigger radius of curvature of the photocathode leads to a positive temporal distortion, and smaller one leads to a negative temporal distortion. And the absolute value of the temporal distortion increases with the increase of the slit length. The small-size streak tube whose radius of curvature of the photocathode is 40 mm owns the smallest temporal distortion. We also calculate the temporal distortions of electrons launched from the different positions of the photocathode with different initial energies, and the initial energy has little influence on the temporal distortion. To sum up, the dominating factor that produces the temporal distortion is the curvature of the photocathode. The slit image under a ramp sweeping voltage on screen is curved due to the temporal distortion. And the bigger the temporal distortion, the greater the curvature of the slit image is. Besides, a linear relation between the temporal distortion and deflection of the slit image is displayed. The spatial resolutions of the streak tubes with the radii of curvature of the photocathode 30 mm, 40 mm, 50 mm are calculated respectively. And the small-size streak tube whose radius of curvature of the photocathode is 30 mm has the highest spatial resolution. The radius of curvature of the streak tube photocathode should be carefully selected according to actual requirements for the streak camera. Through the analysis we provide a significant guidance for streak tube design.
      通信作者: 田进寿, tianjs@opt.ac.cn
      Corresponding author: Tian Jin-Shou, tianjs@opt.ac.cn
    [1]

    Takahashi A, Nishizawa M, Inagaki Y, Koishi M, Kinoshita K 1994 Proceedings of SPIE on Generation, Amplification, and Measurement of Ultrashort Laser Pulses Los Angeles, CA, January 23, 1994 p275

    [2]

    Losovoi V, Ushkov I, Prokhorenko E, Schelev M, Smirnov A 2003 Proceedings of SPIE of 25th International Congress on High-Speed Photography and Photonics Beaune, Finland, September 29, 2002 p297

    [3]

    Hui D D, Tian J S, Wang J F, Lu Y, Wen W L, Xu X Y 2016 Acta Phys. Sin. 65 018502 (in Chinese) [惠丹丹, 田进寿, 王俊锋, 卢裕, 温文龙, 徐向晏 2016 65 018502]

    [4]

    Hinrichs C K 1985 Proceedings of SPIE of 16th Intl Congress on High Speed Photography and Photonics Strasbourg, France, August 27, 1984 p36

    [5]

    Feng J, Shin H J, Nasiatka J R, Wan W, Young A T, Huang G, Comin A, Byrd J, Padmore H A 2007 Appl. Phys. Lett. 91 134102

    [6]

    Zhu M, Tian J S, Wen W L, Wang J F, Cao X B, Lu Y, Xu X Y, Sai X F, Liu H L, Wang X, Li W H 2015 Acta Phys. Sin. 64 098501 (in Chinese) [朱敏, 田进寿, 温文龙, 王俊锋, 曹希斌, 卢裕, 徐向晏, 赛小锋, 刘虎林, 王兴, 李伟华 2015 64 098501]

    [7]

    Mens A, Adolf A, Gontier D, Goulmy C, Jaanimagi P A, Quine C, Rebuffie C J, Segre J, Verrecchia R 1997 Proceedings of SPIE of 22nd International Congress on High-Speed Photography and Photonics Santa Fe, NM, October 27 1996 p139

    [8]

    Chen G f, Chen Z R, Wang X H, Ren Y L 1985 Proceedings of SPIE of 16th Intl Congress on High Speed Photography and Photonics Strasbourg, France, August 27, 1985 p672

    [9]

    Qu J L, Yang Q L, Niu H B, Song Z X {1997 High Power Laser and Particle Beams 9 114 (in Chinese) [屈军乐, 杨勤劳, 牛憨笨,宋宗贤 1997 强激光与粒子束 9 114]

    [10]

    Yi R Q, Yang G H, Cui Y L, Du H B, Wei M X, Dong J J, Zhao Y D, Cui M Q, Zheng L 2006 Acta Phys. Sin. 55 6287 (in Chinese) [易荣清, 杨国洪, 崔延莉, 杜华冰, 韦敏习, 董建军, 赵屹东, 崔明启, 郑雷 2006 55 6287]

    [11]

    Liu J, Wang Q, Li S, Cheng Y, Wei J 2009 Laser Phys. 19 115

    [12]

    Wei J S, Wang Q, Sun J F, Gao J 2010 J. Russ. Laser Res. 31 307

    [13]

    Sun J F, Liu J B, Wang Q 2013 Optik 124 204

    [14]

    Sun J F, Wang T J, Wang X F, Wei J S, Wang Q 2013 Optik 124 2674

    [15]

    Niu H B 1983 Proceedings of SPIE of 15th Intl Congress on High Speed Photography and Photonics San Diego, August 21, 1982 p231

    [16]

    Ageeva N V, Andreev S V, Degtyareva V P, Greenfield D E, Ivanova S R, Kaverin A M, Kulechenkova T P, Levina G P, Makushina V A, Monastyrskiy M A, Polikarkina N D, Schelev M Y, Semichastnova Z M, Skaballanovich T A, Sokolov V E 2009 Proceedings of SPIE of 28th International Congress on High-Speed Imaging and Photonics Canberra, Australia, November 9, 2008 p71261B

    [17]

    Weiland T 1996 Int. J. Numer. Model 9 295

    [18]

    Pei L C, Zhang X Z 1980 Monte Carlo Method and the Application in the Transport of Particles (Beijing, Science Press) pp100-114 (in Chinese) [裴鹿呈, 张孝泽 1980 蒙特卡罗方法及其在粒子输运问题中的应用 (北京: 科学出版社) 第100-114页]

  • [1]

    Takahashi A, Nishizawa M, Inagaki Y, Koishi M, Kinoshita K 1994 Proceedings of SPIE on Generation, Amplification, and Measurement of Ultrashort Laser Pulses Los Angeles, CA, January 23, 1994 p275

    [2]

    Losovoi V, Ushkov I, Prokhorenko E, Schelev M, Smirnov A 2003 Proceedings of SPIE of 25th International Congress on High-Speed Photography and Photonics Beaune, Finland, September 29, 2002 p297

    [3]

    Hui D D, Tian J S, Wang J F, Lu Y, Wen W L, Xu X Y 2016 Acta Phys. Sin. 65 018502 (in Chinese) [惠丹丹, 田进寿, 王俊锋, 卢裕, 温文龙, 徐向晏 2016 65 018502]

    [4]

    Hinrichs C K 1985 Proceedings of SPIE of 16th Intl Congress on High Speed Photography and Photonics Strasbourg, France, August 27, 1984 p36

    [5]

    Feng J, Shin H J, Nasiatka J R, Wan W, Young A T, Huang G, Comin A, Byrd J, Padmore H A 2007 Appl. Phys. Lett. 91 134102

    [6]

    Zhu M, Tian J S, Wen W L, Wang J F, Cao X B, Lu Y, Xu X Y, Sai X F, Liu H L, Wang X, Li W H 2015 Acta Phys. Sin. 64 098501 (in Chinese) [朱敏, 田进寿, 温文龙, 王俊锋, 曹希斌, 卢裕, 徐向晏, 赛小锋, 刘虎林, 王兴, 李伟华 2015 64 098501]

    [7]

    Mens A, Adolf A, Gontier D, Goulmy C, Jaanimagi P A, Quine C, Rebuffie C J, Segre J, Verrecchia R 1997 Proceedings of SPIE of 22nd International Congress on High-Speed Photography and Photonics Santa Fe, NM, October 27 1996 p139

    [8]

    Chen G f, Chen Z R, Wang X H, Ren Y L 1985 Proceedings of SPIE of 16th Intl Congress on High Speed Photography and Photonics Strasbourg, France, August 27, 1985 p672

    [9]

    Qu J L, Yang Q L, Niu H B, Song Z X {1997 High Power Laser and Particle Beams 9 114 (in Chinese) [屈军乐, 杨勤劳, 牛憨笨,宋宗贤 1997 强激光与粒子束 9 114]

    [10]

    Yi R Q, Yang G H, Cui Y L, Du H B, Wei M X, Dong J J, Zhao Y D, Cui M Q, Zheng L 2006 Acta Phys. Sin. 55 6287 (in Chinese) [易荣清, 杨国洪, 崔延莉, 杜华冰, 韦敏习, 董建军, 赵屹东, 崔明启, 郑雷 2006 55 6287]

    [11]

    Liu J, Wang Q, Li S, Cheng Y, Wei J 2009 Laser Phys. 19 115

    [12]

    Wei J S, Wang Q, Sun J F, Gao J 2010 J. Russ. Laser Res. 31 307

    [13]

    Sun J F, Liu J B, Wang Q 2013 Optik 124 204

    [14]

    Sun J F, Wang T J, Wang X F, Wei J S, Wang Q 2013 Optik 124 2674

    [15]

    Niu H B 1983 Proceedings of SPIE of 15th Intl Congress on High Speed Photography and Photonics San Diego, August 21, 1982 p231

    [16]

    Ageeva N V, Andreev S V, Degtyareva V P, Greenfield D E, Ivanova S R, Kaverin A M, Kulechenkova T P, Levina G P, Makushina V A, Monastyrskiy M A, Polikarkina N D, Schelev M Y, Semichastnova Z M, Skaballanovich T A, Sokolov V E 2009 Proceedings of SPIE of 28th International Congress on High-Speed Imaging and Photonics Canberra, Australia, November 9, 2008 p71261B

    [17]

    Weiland T 1996 Int. J. Numer. Model 9 295

    [18]

    Pei L C, Zhang X Z 1980 Monte Carlo Method and the Application in the Transport of Particles (Beijing, Science Press) pp100-114 (in Chinese) [裴鹿呈, 张孝泽 1980 蒙特卡罗方法及其在粒子输运问题中的应用 (北京: 科学出版社) 第100-114页]

  • [1] 田丽萍, 沈令斌, 陈萍, 刘玉柱, 陈琳, 惠丹丹, 陈希儒, 赵卫, 薛彦华, 田进寿. 基于各向异性及后加速技术的百飞秒时间分辨条纹管设计.  , 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231382
    [2] 田丽萍, 沈令斌, 陈萍, 刘玉柱, 陈琳, 惠丹丹, 陈希儒, 赵卫, 薛彦华, 田进寿. 基于各向异性及后加速技术的百飞秒时间分辨条纹管设计.  , 2023, 72(24): 248502. doi: 10.7498/aps.72.20231382
    [3] 何小安, 杨家敏, 黎宇坤, 李晋, 熊刚. 软X射线条纹相机CsI光阴极响应灵敏度的理论计算.  , 2023, 72(24): 245203. doi: 10.7498/aps.72.20231043
    [4] 李晋, 杨品, 杨志文, 张兴, 刘慎业, 董建军, 杨正华, 任宽, 李颖洁, 张璐, 胡昕. 双阴极X射线条纹相机变像管.  , 2022, 71(23): 233201. doi: 10.7498/aps.71.20221194
    [5] 李杭, 陈萍, 田进寿, 薛彦华, 王俊锋, 缑永胜, 张敏睿, 何凯, 徐向晏, 赛小锋, 李亚晖, 刘百玉, 王向林, 辛丽伟, 高贵龙, 汪韬, 王兴, 赵卫. 基于太赫兹脉冲加速及扫描电子束的高时间分辨探测器.  , 2022, 71(2): 028501. doi: 10.7498/aps.71.20210871
    [6] 周少彤, 任晓东, 黄显宾, 徐强. 一种用于Z箍缩实验的软X射线成像系统.  , 2021, 70(4): 045203. doi: 10.7498/aps.70.20200957
    [7] 李杭, 陈萍, 田进寿. 基于太赫兹脉冲加速及扫描电子束的高时间分辨探测器研究.  , 2021, (): . doi: 10.7498/aps.70.20210871
    [8] 惠丹丹, 田进寿, 王俊锋, 卢裕, 温文龙, 徐向晏. 超小型条纹管的动态特性研究.  , 2016, 65(1): 018502. doi: 10.7498/aps.65.018502
    [9] 朱敏, 田进寿, 温文龙, 王俊锋, 曹希斌, 卢裕, 徐向晏, 赛小锋, 刘虎林, 王兴, 李伟华. 基于电子轰击式CCD的大动态条纹相机研究.  , 2015, 64(9): 098501. doi: 10.7498/aps.64.098501
    [10] 刘蓉, 田进寿, 李昊, 王强强, 王超, 温文龙, 卢裕, 刘虎林, 曹希斌, 王俊锋, 徐向晏, 王兴. 行波偏转器前置短磁聚焦条纹变像管理论设计与实验研究.  , 2014, 63(5): 058501. doi: 10.7498/aps.63.058501
    [11] 梁玲亮, 田进寿, 汪韬, 李福利, 高贵龙, 王俊锋, 王超, 卢裕, 徐向晏, 曹希斌, 温文龙, 辛丽伟, 刘虎林, 王兴. 全光固体条纹相机的理论及其静态实验研究.  , 2014, 63(6): 060702. doi: 10.7498/aps.63.060702
    [12] 王华英, 刘飞飞, 宋修法, 廖薇, 赵宝群, 于梦杰, 刘佐强. 高质量等曲率物参光像面数字全息显微系统.  , 2013, 62(2): 024207. doi: 10.7498/aps.62.024207
    [13] 邵晓利, 季小玲. 截断的有振幅调制和位相畸变光束的等效曲率半径.  , 2012, 61(16): 164209. doi: 10.7498/aps.61.164209
    [14] 曾鹏, 袁铮, 邓博, 袁永腾, 李志超, 刘慎业, 赵屹东, 洪才浩, 郑雷, 崔明启. 软X射线条纹相机透射式Au与CsI阴极谱响应灵敏度标定.  , 2012, 61(15): 155209. doi: 10.7498/aps.61.155209
    [15] 潘京生, 亓鲁, 肖洪亮, 张蓉, 周建勋, 蒲冬冬, 吕景文. 微通道板的饱和效应对条纹相机动态范围的影响分析.  , 2012, 61(19): 194211. doi: 10.7498/aps.61.194211
    [16] 蒙志君, 王立峰, 吕明云, 武哲. 曲率对有限曲面狭缝阵列传输特性的影响.  , 2011, 60(1): 017301. doi: 10.7498/aps.60.017301
    [17] 盛亮, 王亮平, 李阳, 彭博栋, 张美, 吴坚, 王培伟, 魏福利, 袁媛. 平面丝阵负载Z箍缩内爆动力学一维图像诊断.  , 2011, 60(10): 105205. doi: 10.7498/aps.60.105205
    [18] 季小玲. 部分相干平顶光束通过湍流大气传输的等效曲率半径.  , 2010, 59(6): 3953-3958. doi: 10.7498/aps.59.3953
    [19] 袁永腾, 郝轶聃, 赵宗清, 侯立飞, 缪文勇. 空间电荷效应对X射线条纹相机动态范围影响的研究.  , 2010, 59(10): 6963-6968. doi: 10.7498/aps.59.6963
    [20] 谢旭东, 王 逍, 朱启华, 曾小明, 王凤蕊, 黄小军, 周凯南, 王 方, 蒋东镔, 黄 征, 孙 立, 刘 华, 王晓东, 邓 武, 郭 仪, 张小民. 光谱分辨条纹相机测量高能啁啾脉冲特性.  , 2007, 56(11): 6463-6467. doi: 10.7498/aps.56.6463
计量
  • 文章访问数:  6847
  • PDF下载量:  212
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-24
  • 修回日期:  2016-04-29
  • 刊出日期:  2016-08-05

/

返回文章
返回
Baidu
map