搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维复式晶格磁振子晶体的带隙结构

刘艳玲 刘文静 包佳美 曹永军

引用本文:
Citation:

二维复式晶格磁振子晶体的带隙结构

刘艳玲, 刘文静, 包佳美, 曹永军

Band-gap structures of two-dimensional magnonic crystals with complex lattices

Liu Yan-Ling, Liu Wen-Jing, Bao Jia-Mei, Cao Yong-Jun
PDF
导出引用
  • 提出了一种复式晶格磁振子晶体的模型,该模型由两种铁磁材料散射体周期排列在另一种铁磁材料基底中构成. 应用超原胞的思想拓展了平面波展开法,用于数值计算研究自旋波在复式晶格磁振子晶体中的本征性质. 本文数值计算了由两种大小不同的铁(Fe)-铁(Fe)圆柱体交替正方排列在氧化铕(EuO)基底材料中构成的二维复式晶格磁振子晶体的带结构,研究了带隙宽度随体积填充率的变化行为,并与同一铁(Fe)圆柱正方排列在氧化铕(EuO)基底材料中构成的简单晶格磁振子晶体的带隙结构随体积填充率的变化行为进行了比较. 结果表明,利用复式晶格可以优化或调节自旋波带隙的宽度和频率位置.
    Magnonic crystals with spin waves as information carriers are the magnetic counterparts of photonic and phononic crystals. The studies of spin waves or magnons in magnonic crystals have attracted increasing attention, especially for the characteristics of band gaps. However, most of the previous work has paid attention to the magnonic crystals with simple lattices. In this paper, the model of magnonic crystals with complex lattices which is composed of two different scatterers of ferromagnetic materials periodically embedded in another kind of ferromagnetic matrix material is proposed for the first time. Then, the plane-wave expansion method is developed by using the idea of super cells, in which the Fourior coefficient of exchange constant in the space of reciprocal lattice vector is analytically derived, and this method can be used to numerically investigate the eigen-properties of spin waves in magnonic crystals with complex lattices. Of course, it can be applied to the fields of other artificial crystals with complex lattices after the corresponding process, such as photonic crystals and phononic crystals. Band structures of two-dimensional magnonic crystal with complex lattices consisting of two different sizes of Fe cylinders alternately arranged in Euo matrix, are numerically calculated by using the above plane-wave expansion method. The behaviors of band gaps of spin waves changing with the total filling fraction of volume f and also with the mismatch of the filling fraction of volume of two Fe cylinders in EuO matrix are numerically studied. The results of magnonic crystals with complex lattices are compared with those of magnonic crystal with simple latticeic. Some conclusions are summarized as follows. In the same filling fraction of volume f, the width of band gap B4, 5 in the magnonic crystal with complex lattice is always larger than that with the simple lattice, but the width of band gap B8, 9 in the complex lattice is less than that in the simple lattice. When f = (fA + fB)/2 = 0.5, the width of band gap B4, 5 increases as the mismatch between fA and fB increases, but the behavior of the gap B8, 9 is opposite. Moreover, some new spin-wave gaps can be generated by changing the mismatch between fA and fB. This is because the gaps in our studied systems result from the mechanism of Bragg scattering of spin wave in periodic ferromagnetic materials. When the mismatch between fA and fB increases, the multiple scattering effects become stronger. All of these results show that the width or the frequency of band gap can be optimized or tuned by using the complex lattice. Such an approach through fabricating complex lattices may open a new scope for engineering and designing the band gaps of magnonic crystals.
      通信作者: 曹永军, phyjcao@imnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11264028)、内蒙古自治区自然科学基金(批准号:2015BS0106)和内蒙古师范大学2015年度研究生创新基金(批准号:CXJJS15076)资助的课题.
      Corresponding author: Cao Yong-Jun, phyjcao@imnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11264028), the Natural Science Foundation of Inner Mongolia Autonomous Region, China (Grant No. 2015BS0106), and the Inner Mongolia Normal University Graduate Students' Research Innovation Fund, China (Grant No. CXJJS15076).
    [1]

    Puszkarski H, Krawczyk M 2003 Solid State Phenomena 94 125

    [2]

    Wang Z K, Zhang V L, Lim H S, Ng S C, Kuok M H, Jain S, Adeyeye A O 2009 Appl. Phys. Lett. 94 083112

    [3]

    Vasseur J O, Dobrzynski L, Djafari-Rouhani B 1996 Phys. Rev. B 54 1043

    [4]

    Chou G X, Lin F L, Li Y P 2003 Acta Phys. Sin. 52 600 (in Chinese) [仇高新, 林芳蕾, 李永平 2003 52 600]

    [5]

    Nian X Z, Chen H M 2009 Opt. Optoelectron. Technol. 7 23 in Chinese {2009 7 23 (in Chinese) [年秀芝, 陈鹤鸣 2009 光学与光电技术 7 23]

    [6]

    Zhao F, Yuan L B 2005 Acta Phys. Sin. 54 4511 (in Chinese) [赵芳, 苑立波 2005 54 4511]

    [7]

    Chen H Y, Luo X D, Ma H R 2007 Phys. Rev. B 75 024306

    [8]

    Xu Z L, Wu F G, Mu Z F, Zhang X, Yao Y W 2007 J. Phys. D: Appl. Phys. 40 5584

    [9]

    Wang Q, Zhong Z Y, Jin L C, Tang L C, Li X, Bai F M, Zhang H W 2013 J. Appl.Phys. 113 153905

    [10]

    Cao Y J, Yun G H, Narsu 2011 Acta Phys. Sin. 60 077502 (in Chinese) [曹永军, 云国宏, 那日苏 2011 60 077502]

    [11]

    Cao Y J, Yun G H, Liang X X, Bai N 2010 J. Phys. D: Appl. Phys. 43 305005

  • [1]

    Puszkarski H, Krawczyk M 2003 Solid State Phenomena 94 125

    [2]

    Wang Z K, Zhang V L, Lim H S, Ng S C, Kuok M H, Jain S, Adeyeye A O 2009 Appl. Phys. Lett. 94 083112

    [3]

    Vasseur J O, Dobrzynski L, Djafari-Rouhani B 1996 Phys. Rev. B 54 1043

    [4]

    Chou G X, Lin F L, Li Y P 2003 Acta Phys. Sin. 52 600 (in Chinese) [仇高新, 林芳蕾, 李永平 2003 52 600]

    [5]

    Nian X Z, Chen H M 2009 Opt. Optoelectron. Technol. 7 23 in Chinese {2009 7 23 (in Chinese) [年秀芝, 陈鹤鸣 2009 光学与光电技术 7 23]

    [6]

    Zhao F, Yuan L B 2005 Acta Phys. Sin. 54 4511 (in Chinese) [赵芳, 苑立波 2005 54 4511]

    [7]

    Chen H Y, Luo X D, Ma H R 2007 Phys. Rev. B 75 024306

    [8]

    Xu Z L, Wu F G, Mu Z F, Zhang X, Yao Y W 2007 J. Phys. D: Appl. Phys. 40 5584

    [9]

    Wang Q, Zhong Z Y, Jin L C, Tang L C, Li X, Bai F M, Zhang H W 2013 J. Appl.Phys. 113 153905

    [10]

    Cao Y J, Yun G H, Narsu 2011 Acta Phys. Sin. 60 077502 (in Chinese) [曹永军, 云国宏, 那日苏 2011 60 077502]

    [11]

    Cao Y J, Yun G H, Liang X X, Bai N 2010 J. Phys. D: Appl. Phys. 43 305005

  • [1] 魏巍, 管峰, 方鑫. 基于带隙阻波隔振的超材料梁吸隔振一体化设计方法.  , 2024, 73(22): 224602. doi: 10.7498/aps.73.20241135
    [2] 郭志巍, 郭寒贝, 王婷. 侧向局域共振超构板声振特性.  , 2021, 70(21): 214301. doi: 10.7498/aps.70.20210595
    [3] 杜春阳, 郁殿龙, 刘江伟, 温激鸿. X形超阻尼局域共振声子晶体梁弯曲振动带隙特性.  , 2017, 66(14): 140701. doi: 10.7498/aps.66.140701
    [4] 胡晓颖, 郭晓霞, 胡文弢, 呼和满都拉, 郑晓霞, 荆丽丽. 旋转方形散射体对三角晶格磁振子晶体带结构的优化.  , 2015, 64(10): 107501. doi: 10.7498/aps.64.107501
    [5] 陈阿丽, 梁同利, 汪越胜. 二维8重固-流型准周期声子晶体带隙特性研究.  , 2014, 63(3): 036101. doi: 10.7498/aps.63.036101
    [6] 胡晓颖, 呼和满都拉, 曹永军. 三角晶格磁振子晶体带结构的优化研究.  , 2014, 63(14): 147501. doi: 10.7498/aps.63.147501
    [7] 曹永军, 江鑫. 二维磁振子晶体中线缺陷模的性质及其应用.  , 2013, 62(8): 087501. doi: 10.7498/aps.62.087501
    [8] 李文胜, 罗时军, 黄海铭, 张琴, 付艳华. 一种基于光子晶体结构的坦克涂层设计.  , 2012, 61(16): 164102. doi: 10.7498/aps.61.164102
    [9] 曹永军, 谭伟, 刘燕. 二维磁振子晶体中点缺陷模的耦合性质研究.  , 2012, 61(11): 117501. doi: 10.7498/aps.61.117501
    [10] 文岐华, 左曙光, 魏欢. 多振子梁弯曲振动中的局域共振带隙.  , 2012, 61(3): 034301. doi: 10.7498/aps.61.034301
    [11] 胡家光, 徐文, 肖宜明, 张丫丫. 晶格中心插入体的对称性及取向对二维声子晶体带隙的影响.  , 2012, 61(23): 234302. doi: 10.7498/aps.61.234302
    [12] 王立勇, 曹永军. 散射体排列方式对二维磁振子晶体带隙结构的影响.  , 2011, 60(9): 097501. doi: 10.7498/aps.60.097501
    [13] 曹永军, 云国宏, 那日苏. 平面波展开法计算二维磁振子晶体带结构.  , 2011, 60(7): 077502. doi: 10.7498/aps.60.077502
    [14] 刘青, 王鸣, 郭文华, 闫海涛, 喻平. 一种胶体光子晶体修饰的光纤.  , 2010, 59(10): 7086-7090. doi: 10.7498/aps.59.7086
    [15] 董华锋, 吴福根, 牟中飞, 钟会林. 二维复式声子晶体中基元配置对声学能带结构的影响.  , 2010, 59(2): 754-758. doi: 10.7498/aps.59.754
    [16] 许振龙, 吴福根. 基元配置对二维光子晶体不同能带之间带隙的调节和优化.  , 2009, 58(9): 6285-6290. doi: 10.7498/aps.58.6285
    [17] 牟中飞, 吴福根, 张 欣, 钟会林. 超元胞方法研究平移群对称性对声子带隙的影响.  , 2007, 56(8): 4694-4699. doi: 10.7498/aps.56.4694
    [18] 汪静丽, 陈鹤鸣. 二维棋盘格子复式晶格的完全光子带隙研究.  , 2007, 56(2): 922-926. doi: 10.7498/aps.56.922
    [19] 赵 芳, 苑立波. 二维复式格子声子晶体带隙结构特性.  , 2005, 54(10): 4511-4516. doi: 10.7498/aps.54.4511
    [20] 庄飞, 吴良, 何赛灵. 用线性变换方法计算二维正方晶胞正n边形直柱光子晶体的带隙结构.  , 2002, 51(12): 2865-2870. doi: 10.7498/aps.51.2865
计量
  • 文章访问数:  7469
  • PDF下载量:  288
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-15
  • 修回日期:  2016-05-23
  • 刊出日期:  2016-08-05

/

返回文章
返回
Baidu
map