搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高倍聚光光伏模组中三结太阳电池沿光轴方向光电性能与优化

连榕海 梁齐兵 舒碧芬 范畴 吴小龙 郭银 汪婧 杨晴川

引用本文:
Citation:

高倍聚光光伏模组中三结太阳电池沿光轴方向光电性能与优化

连榕海, 梁齐兵, 舒碧芬, 范畴, 吴小龙, 郭银, 汪婧, 杨晴川

Performance and optimization research of triple-junction solar cell along the optical axis direction on \text{the HCPV module}

Lian Rong-Hai, Liang Qi-Bing, Shu Bi-Fen, Fan Chou, Wu Xiao-Long, Guo Yin, Wang Jing, Yang Qing-Chuan
PDF
导出引用
  • 目前, 在高倍聚光光伏模组设计中, 由于对菲涅耳透镜聚光后各波段的光强分布及其非均匀特性缺乏研究和认识, 通常认为在菲涅耳透镜的聚光焦平面处多结太阳电池输出功率最大, 本文通过光线跟踪模拟的方法, 计算并分析菲涅耳透镜聚光下不同波段的光照能量分布和非均匀特性. 同时, 结合三结太阳电池电路网络模型, 研究在高倍聚光光伏模组中, 沿光轴方向不同位置处三结太阳电池的发电性能. 结果表明: 模组输出功率最高位置在焦平面沿光轴方向上下两侧的位置, 优化后模组输出功率比常规设计提高20% 以上. 该模拟结果得到了实验结果的验证.
    High concentrating photovoltaic (HCPV) technology plays a more and more important role in solar power generation due to its extremely high efficiency. However, the efficiency of the HCPV module can be reduced by many factors. Especially, there are not enough researches and knowledge on the light intensity distribution and non-uniform illumination of different wavelengths of light concentrated by Fresnel lens. It is generally considered that the maximum power of multi-junction solar cell is achieved when the cell is placed on the focal plane of Fresnel lens. But it is proved to be incorrect by our research. When light beams of different wavelengths go through the Fresnel lens, their light spot distributions on the optical axis are not the same as those when they have different refractive indexes in Fresnel lens. At the same time, the triple-junction solar cell consists of three sub-cells which absorb light beams of different wavelengths respectively. Therefore, the performance of triple-junction cells would be influenced by the light distribution along the optical axis, this is exactly what we want to study in this work. The method of simulating the light tracing is used to calculate and analyze the light intensity distribution and non-uniform characteristics of different wavelengths of light concentrated by Fresnel lens. Combined with them from the circuit network model of a triple-junction solar cell, the electrical performances of triple-junction solar cell at different positions along the optical axis are studied. It is found from the simulation that the performance of cell does not reach the best state when cell is placed on the focal plane. The power of cell on the focal plane reaches only 0.41 W while the maximum point arrives at 0.69 W. The high non-uniformity of light on cell surface when cell is placed on the focal plane causes the decline of power. And an outdoor HCPV testing system with the ability to change the distance between Fresnel lens and the cell is conducted. The experimental results and the simulation results match well, therefore our simulation approach is verified. It shows that the module achieves the maximum power on either side of the focal plane, and the output power can increase more than 20% after optimization. It is a result after equilibrium between light intensity and uniformity on cell surface.
      通信作者: 舒碧芬, shubifen@163.com
    • 基金项目: 广东省自然科学基金(批准号:2014A030311050)和广东省重大科技专项(批准号:2013A011402005)资助的课题.
      Corresponding author: Shu Bi-Fen, shubifen@163.com
    • Funds: Project supported by the Natural Science Foundation of Guangdong Province, China (Grant No. 2014A030311050) and the Major Science and Technology Special Project of Guangdong Province, China (Grant No. 2013A011402005).
    [1]

    Green M A, Emery K, Hishikawa Y, Warta W, Dunlop E D 2015 Prog. Photovoltaics 23 1

    [2]

    Baig H, Heasman K C, Mallick T K 2012 Renew. Sust. Energy Rev. 16 5890

    [3]

    Helmers H, Schachtner M, Bett A W 2013 Sol. Energy Mater. Sol. Cells 116 144

    [4]

    Zhang W, Chen C, Jia R, Sun Y, Xing Z, Jin Z, Liu X Y, Liu X W 2015 Chin. Phys. B 24 108801

    [5]

    Eduardo F F, Florencia A 2015 Energy Convers. Manage. 103 1031

    [6]

    Chen F X, Wang L S, Xu W Y 2013 Chin. Phys. B 22 045202

    [7]

    Zubi G, Bernal-Agustn J L, Fracastoro G 2009 Renew. Sust. Energy Rev. 13 2645

    [8]

    Chen N F, Bai Y M 2007 Physics 36 862 (in Chinese) [陈诺夫, 白一鸣 2007 物理 36 862]

    [9]

    Yang G H, Wei M, Chen B Z, Dai M C, Guo L M, Wang Z Y 2013 J. Appl. Opt. 34 898 (in Chinese) [杨光辉, 卫明, 陈丙振, 代明崇, 郭丽敏, 王智勇 2013 应用光学 34 898]

    [10]

    Languy F, Fleury K, Lenaerts C, Loicq J, Regaert D, Thibert T, Habraken S 2011 Opt. Express 19 A280

    [11]

    Marc S, Armin B, Alexander D, Frank D, Tobias D, Matt M, Thorsten H, Gerald S, Maike W, Andreas W B 2015 Prog. Photovoltaics 23 1323

    [12]

    Steiner M, Philipps S P, Hermle M, Bett A W, Dimroth F 2011 Prog. Photovoltaics 19 73

    [13]

    Steiner M, Guter W, Peharz G, Philipps S P, Dimroth F, Bett A W 2012 Prog. Photovoltaics 20 274

    [14]

    Segev G, Mittelman G, Kribus A 2012 Sol. Energy Mater. Sol. Cells 98 57

    [15]

    Rodrigo P, Fernndez E F, Almonacid F, Prez-Higueras P J 2013 Renew. Sust. Energy Rev. 26 752

    [16]

    Yi S G, Zhang W H, Ai B, Song J W, Shen H 2014 Chin. Phys. B 23 028801

    [17]

    Jia X J, Ai B, Xu X X, Yang J M, Deng Y J, Shen H 2014 Acta Phys. Sin 63 068801 (in Chinese) [贾晓洁, 艾斌, 许欣翔, 杨江海, 邓幼俊, 沈辉 2014 63 068801]

    [18]

    Liang Q B, Shu B F, Sun L J, Zhang Q Z, Chen M B 2014 Acta Phys. Sin 63 168801 (in Chinese) [梁齐兵, 舒碧芬, 孙丽娟, 张奇淄, 陈明彪 2014 63 168801]

    [19]

    Ota Y, Nishioka K 2012 Sol. Energy 86 476

  • [1]

    Green M A, Emery K, Hishikawa Y, Warta W, Dunlop E D 2015 Prog. Photovoltaics 23 1

    [2]

    Baig H, Heasman K C, Mallick T K 2012 Renew. Sust. Energy Rev. 16 5890

    [3]

    Helmers H, Schachtner M, Bett A W 2013 Sol. Energy Mater. Sol. Cells 116 144

    [4]

    Zhang W, Chen C, Jia R, Sun Y, Xing Z, Jin Z, Liu X Y, Liu X W 2015 Chin. Phys. B 24 108801

    [5]

    Eduardo F F, Florencia A 2015 Energy Convers. Manage. 103 1031

    [6]

    Chen F X, Wang L S, Xu W Y 2013 Chin. Phys. B 22 045202

    [7]

    Zubi G, Bernal-Agustn J L, Fracastoro G 2009 Renew. Sust. Energy Rev. 13 2645

    [8]

    Chen N F, Bai Y M 2007 Physics 36 862 (in Chinese) [陈诺夫, 白一鸣 2007 物理 36 862]

    [9]

    Yang G H, Wei M, Chen B Z, Dai M C, Guo L M, Wang Z Y 2013 J. Appl. Opt. 34 898 (in Chinese) [杨光辉, 卫明, 陈丙振, 代明崇, 郭丽敏, 王智勇 2013 应用光学 34 898]

    [10]

    Languy F, Fleury K, Lenaerts C, Loicq J, Regaert D, Thibert T, Habraken S 2011 Opt. Express 19 A280

    [11]

    Marc S, Armin B, Alexander D, Frank D, Tobias D, Matt M, Thorsten H, Gerald S, Maike W, Andreas W B 2015 Prog. Photovoltaics 23 1323

    [12]

    Steiner M, Philipps S P, Hermle M, Bett A W, Dimroth F 2011 Prog. Photovoltaics 19 73

    [13]

    Steiner M, Guter W, Peharz G, Philipps S P, Dimroth F, Bett A W 2012 Prog. Photovoltaics 20 274

    [14]

    Segev G, Mittelman G, Kribus A 2012 Sol. Energy Mater. Sol. Cells 98 57

    [15]

    Rodrigo P, Fernndez E F, Almonacid F, Prez-Higueras P J 2013 Renew. Sust. Energy Rev. 26 752

    [16]

    Yi S G, Zhang W H, Ai B, Song J W, Shen H 2014 Chin. Phys. B 23 028801

    [17]

    Jia X J, Ai B, Xu X X, Yang J M, Deng Y J, Shen H 2014 Acta Phys. Sin 63 068801 (in Chinese) [贾晓洁, 艾斌, 许欣翔, 杨江海, 邓幼俊, 沈辉 2014 63 068801]

    [18]

    Liang Q B, Shu B F, Sun L J, Zhang Q Z, Chen M B 2014 Acta Phys. Sin 63 168801 (in Chinese) [梁齐兵, 舒碧芬, 孙丽娟, 张奇淄, 陈明彪 2014 63 168801]

    [19]

    Ota Y, Nishioka K 2012 Sol. Energy 86 476

  • [1] 孟婧, 高博文. 基于聚合物非富勒烯体系PM6:Y6的钙钛矿/有机集成太阳电池光伏性能优化.  , 2023, 72(12): 128801. doi: 10.7498/aps.72.20230081
    [2] 李鑫鹏, 曹睿杰, 李铭, 郭各朴, 李禹志, 马青玉. 基于粒子群算法的超振荡超分辨聚焦声场设计.  , 2022, 71(20): 204304. doi: 10.7498/aps.71.20220898
    [3] 李俊炜, 王祖军, 石成英, 薛院院, 宁浩, 徐瑞, 焦仟丽, 贾同轩. GaInP/GaAs/Ge三结太阳电池不同能量质子辐照损伤模拟.  , 2020, 69(9): 098802. doi: 10.7498/aps.69.20191878
    [4] 潮兴兵, 潘鲁平, 王子圣, 杨锋涛, 丁剑平. 图像传感器像素化效应对菲涅耳非相干关联全息分辨率的影响.  , 2019, 68(6): 064203. doi: 10.7498/aps.68.20181844
    [5] 汤明玉, 武梦婷, 臧瑞环, 荣腾达, 杜艳丽, 马凤英, 段智勇, 弓巧侠. 菲涅耳非相干数字全息大视场研究.  , 2019, 68(10): 104204. doi: 10.7498/aps.68.20182216
    [6] 陈家祯, 郑子华, 叶锋, 连桂仁, 许力. 三维物体多重菲涅耳计算全息水印与无干扰可控重建方法.  , 2017, 66(23): 234202. doi: 10.7498/aps.66.234202
    [7] 马大燕, 陈诺夫, 付蕊, 刘虎, 白一鸣, 弭辙, 陈吉堃. 晶格失配对GaInP/InxGa1-xAs/InyGa1-yAs倒装三结太阳电池性能影响的分析.  , 2017, 66(4): 048801. doi: 10.7498/aps.66.048801
    [8] 李欣, 林桂江, 刘翰辉, 陈松岩, 刘冠洲. 色散效应对聚光多结太阳电池性能的影响及优化.  , 2017, 66(14): 148801. doi: 10.7498/aps.66.148801
    [9] 潘安, 王东, 史祎诗, 姚保利, 马臻, 韩洋. 多波长同时照明的菲涅耳域非相干叠层衍射成像.  , 2016, 65(12): 124201. doi: 10.7498/aps.65.124201
    [10] 许强强, 季旭, 李明, 刘佳星, 李海丽. 菲涅耳聚光下半导体温差发电组件性能研究.  , 2016, 65(23): 237201. doi: 10.7498/aps.65.237201
    [11] 梁齐兵, 舒碧芬, 孙丽娟, 张奇淄, 陈明彪. 三结太阳电池在非均匀光照下光斑强度和覆盖比率的优化研究.  , 2014, 63(16): 168801. doi: 10.7498/aps.63.168801
    [12] 陈应天, 何祚庥. 用于轴对称的两级光学聚光器的非成像二次反射镜.  , 2013, 62(13): 134209. doi: 10.7498/aps.62.134209
    [13] 江浩, 张新廷, 国承山. 基于菲涅耳衍射的无透镜相干衍射成像.  , 2012, 61(24): 244203. doi: 10.7498/aps.61.244203
    [14] 肖文波, 何兴道, 高益庆. 线偏振光电位移矢量振动方向对InGaP/InGaAs/Ge三结太阳电池开路电压的影响.  , 2012, 61(10): 108802. doi: 10.7498/aps.61.108802
    [15] 郑新霞, 张晓丹, 杨素素, 王光红, 许盛之, 魏长春, 孙建, 耿新华, 熊绍珍, 赵颖. 单室沉积非晶硅/非晶硅/微晶硅三叠层太阳电池的研究.  , 2011, 60(6): 068801. doi: 10.7498/aps.60.068801
    [16] 蔡宏琨, 陶科, 王林申, 赵敬芳, 隋妍萍, 张德贤. 柔性衬底非晶硅薄膜太阳电池界面处理的研究.  , 2009, 58(11): 7921-7925. doi: 10.7498/aps.58.7921
    [17] 张勇, 刘艳, 吕斌, 汤乃云, 王基庆, 张红英. 前端接触势垒高度对非晶硅和微晶硅异质结太阳电池的影响.  , 2009, 58(4): 2829-2835. doi: 10.7498/aps.58.2829
    [18] 徐永锋, 李明, 王六玲, 林文贤, 张兴华, 项明, 王云峰, 魏生贤. 聚光光强对光伏电池阵列输出性能的影响.  , 2009, 58(11): 8067-8076. doi: 10.7498/aps.58.8067
    [19] 胡志华, 廖显伯, 刁宏伟, 夏朝凤, 许 玲, 曾湘波, 郝会颖, 孔光临. 非晶硅太阳电池光照J-V特性的AMPS模拟.  , 2005, 54(5): 2302-2306. doi: 10.7498/aps.54.2302
    [20] 晏懋洵, 吴书祥, 许惠英, 吴恩, 毛晋昌, 林旋英, 张光华, 刘嘉. 非晶硅太阳电池的光伏检测磁共振研究.  , 1988, 37(5): 847-850. doi: 10.7498/aps.37.847
计量
  • 文章访问数:  6219
  • PDF下载量:  258
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-28
  • 修回日期:  2016-04-10
  • 刊出日期:  2016-07-05

/

返回文章
返回
Baidu
map