搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双重频率锁定的腔衰荡吸收光谱技术及信号处理

贾梦源 赵刚 侯佳佳 谭巍 邱晓东 马维光 张雷 董磊 尹王保 肖连团 贾锁堂

引用本文:
Citation:

双重频率锁定的腔衰荡吸收光谱技术及信号处理

贾梦源, 赵刚, 侯佳佳, 谭巍, 邱晓东, 马维光, 张雷, 董磊, 尹王保, 肖连团, 贾锁堂

Research and data processing of double locked cavity ringdown absorption spectroscopy

Jia Meng, Zhao Gang, Hou Jia-Jia, Tan Wei, Qiu Xiao-Dong, Ma Wei-Guang, Zhang Lei, Dong Lei, Yin Wang-Bao, Xiao Lian-Tuan, Jia Suo-Tang
PDF
导出引用
  • 针对传统腔衰荡光谱技术浓度获取率低, 提出基于双重锁定的连续波腔衰荡吸收光谱技术. 通过波长调制一次谐波信号将激光器的频率锁定到C2H2吸收线上, 同时使用PDH锁频技术将衰荡腔锁定到激光器上, 从而避免了测量过程中激光器的频率漂移和腔长的抖动, 使测量结果更加精确; 并且, 由于双重锁定, 单次衰荡事件的发生率, 也就是浓度信息的获取率只受衰荡时间以及重新锁定时间限制, 在本试验系统中采集速率可以达到30 kHz, 可以实现对气体浓度的快速测量. 为了提高信噪比, 采用Kalman滤波技术, 对浓度信息进行实时处理, 有效抑制了噪声, 根据阿伦方差分析, 探测灵敏度可以达到410-9 cm-1 (2 s平均).
    A continuous wave cavity ringdown spectroscopy based on a double-locking loop is proposed to improve the shortcoming of low acquisition rate of concentration in traditional scheme. A small portion of laser is separated to pass through a C2H2 reference cell, used to lock the laser frequency to the 1+3 band P(9)e absorption line of C2H2 at 6534.3634 cm-1 by the 1st harmonic demodulation of the frequency modulation spectroscopy. The remaining portion is incident on a high finesses cavity to observe the ringdown events. Meanwhile, the reflected light of cavity is used to extract the error signal to lock the laser based on the PDH frequency locking technique. As a consequence, the frequency drift of the laser and the jitter of the cavity length are improved, therefore a more relatively accuracy result is expected. The laser light is dual frequency modulated by a fiber coupled electro optic modulator (FEOM)in the above system. In order to optimize, to some extent, the asymmetry of the error signal caused by the residual amplitude modulation due to the inconsistency of the laser polarization direction with the extraordinary axis of the FEOM, the demodulation phase is adjusted carefully until the error signal is smoothed up and close to symmetry. Then, the effect of locking loop is examined. The frequency of laser, based on the measurement by a wavelength meter, is more stable and the relative frequency discrimination between the laser and the longitudinal mode of cavity is about 9.8 kHz. In addition, the PDH locking, ensuring the efficient coupling of the laser with the cavity, can gain a high acquisition rate of the concentration information. In order to obtain a complete ringdown event, the frequency of square wave to the fiber coupled acoustic optical modulator (FAOM) is limited to 30 kHz with the duty cycle of 85%, which is determined by the ringdown time and re-lock time. However, there exists a relatively large random noise in a series of ringdown time measurements of empty cavity, which is mainly caused by the errors of fitting and measurement. For the further improvement of the accuracy of experiment, an efficient digital filter, Kalman filter which can suppress the noise considerably at no expense of real-time capability, is used. The standard deviation of the ringdown time is reduced from 0.00333 to 0.00153. According to Allan variance analysis, the detection limit can reach 410-9 cm-1 for a 2 s integration time. Finally, the C2H2 gases with different concentrations from 100 ppb to 5 ppm are measured to demonstrate the linear response of this system.
      通信作者: 马维光, mwg@sxu.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2012CB921603)、教育部长江学者和创新团队发展计划(批准号: IRT13076)、国家自然科学基金(批准号: 11434007, 61475093, 61378047, 61275213, 61475093)、国家科技支撑计划(批准号: 2013BAC14B01)、山西省青年科学基金(批准号: 2013021004-1, 2012021022-1)、山西省回国留学人员科研资助项目(批准号: 2013-011, 2013-01)和山西省高等学校创新人才支持计划资助的课题.
      Corresponding author: Ma Wei-Guang, mwg@sxu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2012CB921603), the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT13076), the National Natural Science Foundation of China (Grant Nos. 11434007, 61475093, 61378047, 61275213, 61475093), the National Science and Technology Support Program, China (Grant No. 2013BAC14B01), the Shanxi Natural Science Foundation for Young Scientists, China (Grant Nos. 2013021004-1, 2012021022-1), the Shanxi Scholarship Council of China (Grant Nos. 2013-011, 2013-01), and the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi, China.
    [1]

    Kiehl J T, Trenberth K E 1997 Surv. Geophys. 78 197

    [2]

    Anne M A, Piliego C, Katsouras V, Blom P W M, de Leeuw D M 2014 Chem. Mater. 26 773

    [3]

    Wang Y, Nikodem M, Zhang E, Cikach F, Barnes J, Comhair S, Dweik R A, Kao C, Wysocki G 2015 Sci. Rep. 5 9096

    [4]

    Shao J, Gao X M, Yang Y, Huang W, Pei S X, Yuan Y Q, Zhou S K, Zhang W J 2006 Spectrosc. Spect. Anal. 26 213 (in Chinese) [邵杰, 高晓明, 杨顒, 黄伟, 裴世鑫, 袁怿谦, 周士康, 张为俊 2006 光谱学与光谱分析 26 213]

    [5]

    Pei S X, Gao X M, Cui F P, Huang W, Yang Y, Shao J, Huang T, Zhao W X, Zhang W J 2005 Chin. J. Chem. Phys. 18 660 (in Chinese) [裴世鑫, 高晓明, 崔芬萍, 黄伟, 杨颙, 邵杰, 黄腾, 赵卫雄, 张为俊 2005 化学 18 660]

    [6]

    Cao L, Wang C M, Chen Y Q, Yang X H 2006 Acta Phys. Sin. 55 6354 (in Chinese) [曹琳, 王春梅, 陈扬骎, 杨晓华 2006 55 6354]

    [7]

    Wang C M, Li J, Gong T L, Chen Y Q, Yang X H 2007 Acta Opt. Sin. 27 2087 (in Chinese) [王春梅, 李炯, 龚天林, 陈扬骎, 杨晓华 2007 光学学报 27 2087]

    [8]

    Wang D, Hu R Z, Xie P H, Qin M, Ling L Y, Duan J 2014 Spectrosc. Spect. Anal. 34 2845 (in Chinese) [王丹, 胡仁志, 谢品华, 秦敏, 凌六一, 段俊 2014 光谱学与光谱分析 34 2845]

    [9]

    O'Keefeand A, Deacon D A G 1988 Rev. Sci. Instrum. 59 2544

    [10]

    Romanini D, Kachanov A A, Sadeghi N, Stoeckel F 1997 Chem. Phys. Lett. 264 316

    [11]

    Paldus B A, Harb C C, Spence T G, Wilke B, Xie J, Harris J S, Zare R N 1998 Appl. Phys. 83 3991

    [12]

    Pan H, Cheng C F, Sun Y, Gao B, Liu A W, Hu S M 2011 Rev. Sci. Instrum. 82 103110

    [13]

    Truong G W, Douglass S E, van Zee R D, Plusquellic D F, Hodges J T, Long D A 2013 Appl. Phys.B 7 532

    [14]

    Cygan A, Lisak D, Maslowski P, Bielska K, Wojtewicz S, Domyslawska J, Trawinski R S, Ciurylo R, Abe H, Hodges J T 2011 Rev. Sci. Instrum. 82 063107

    [15]

    Ma W G, Zhao G, Fu X F, Li Z X, Tan W, Dong L, Zhang L, Yin W B, Jia S T 2014 Chin. J. Lasers 41 0115002 (in Chinese) [马维光, 赵刚, 付小芳, 李志新, 谭巍, 董磊, 张雷, 尹王保, 贾锁堂 2014 中国激光 41 0115002]

    [16]

    Leleux D P, Claps R, Chen W, Tittel F K, Harman T L 2002 Appl. Phys. B 74 85

    [17]

    Claps R, Englich F V, Leleux D P, Richter D, Tittel F K, Curl R F 2001 Appl. Opt. 40 4387

    [18]

    Riris H, Carlisle C B, Warren R E 1994 Appl. Opt. 33 5506

    [19]

    Li Z, Ma W, Fu X, Tan W, Zhao G, Dong L, Zhang L, Yin W, Jia S 2013 Appl. Phys. Express 6 072402

    [20]

    Li Z, Ma W, Fu X, Tan W, Zhao G, Dong L, Zhang L, Yin W, Jia S 2013 Opt. Express 21 17961

    [21]

    Kosterev A A, Malinovsky A L, Tittel F K, Gmachl C, Capasso F, Sivco D L, Baillargeon J N, Hutchinson A L, Cho A Y 2011 Appl. Opt. 40 5522

    [22]

    Chen W G, Wan F, Zou J X, Gu Z L, Zhou Q 2015 Chin. Phys. B 24 024206

    [23]

    HITRAN 2008 Database (Version 12.0)

    [24]

    Cheng B, Wang Z Y, Wu B, Xu A P, Wang Q Y, Xu Y F, Lin Q 2014 Chin. Phys. B 23 104222

  • [1]

    Kiehl J T, Trenberth K E 1997 Surv. Geophys. 78 197

    [2]

    Anne M A, Piliego C, Katsouras V, Blom P W M, de Leeuw D M 2014 Chem. Mater. 26 773

    [3]

    Wang Y, Nikodem M, Zhang E, Cikach F, Barnes J, Comhair S, Dweik R A, Kao C, Wysocki G 2015 Sci. Rep. 5 9096

    [4]

    Shao J, Gao X M, Yang Y, Huang W, Pei S X, Yuan Y Q, Zhou S K, Zhang W J 2006 Spectrosc. Spect. Anal. 26 213 (in Chinese) [邵杰, 高晓明, 杨顒, 黄伟, 裴世鑫, 袁怿谦, 周士康, 张为俊 2006 光谱学与光谱分析 26 213]

    [5]

    Pei S X, Gao X M, Cui F P, Huang W, Yang Y, Shao J, Huang T, Zhao W X, Zhang W J 2005 Chin. J. Chem. Phys. 18 660 (in Chinese) [裴世鑫, 高晓明, 崔芬萍, 黄伟, 杨颙, 邵杰, 黄腾, 赵卫雄, 张为俊 2005 化学 18 660]

    [6]

    Cao L, Wang C M, Chen Y Q, Yang X H 2006 Acta Phys. Sin. 55 6354 (in Chinese) [曹琳, 王春梅, 陈扬骎, 杨晓华 2006 55 6354]

    [7]

    Wang C M, Li J, Gong T L, Chen Y Q, Yang X H 2007 Acta Opt. Sin. 27 2087 (in Chinese) [王春梅, 李炯, 龚天林, 陈扬骎, 杨晓华 2007 光学学报 27 2087]

    [8]

    Wang D, Hu R Z, Xie P H, Qin M, Ling L Y, Duan J 2014 Spectrosc. Spect. Anal. 34 2845 (in Chinese) [王丹, 胡仁志, 谢品华, 秦敏, 凌六一, 段俊 2014 光谱学与光谱分析 34 2845]

    [9]

    O'Keefeand A, Deacon D A G 1988 Rev. Sci. Instrum. 59 2544

    [10]

    Romanini D, Kachanov A A, Sadeghi N, Stoeckel F 1997 Chem. Phys. Lett. 264 316

    [11]

    Paldus B A, Harb C C, Spence T G, Wilke B, Xie J, Harris J S, Zare R N 1998 Appl. Phys. 83 3991

    [12]

    Pan H, Cheng C F, Sun Y, Gao B, Liu A W, Hu S M 2011 Rev. Sci. Instrum. 82 103110

    [13]

    Truong G W, Douglass S E, van Zee R D, Plusquellic D F, Hodges J T, Long D A 2013 Appl. Phys.B 7 532

    [14]

    Cygan A, Lisak D, Maslowski P, Bielska K, Wojtewicz S, Domyslawska J, Trawinski R S, Ciurylo R, Abe H, Hodges J T 2011 Rev. Sci. Instrum. 82 063107

    [15]

    Ma W G, Zhao G, Fu X F, Li Z X, Tan W, Dong L, Zhang L, Yin W B, Jia S T 2014 Chin. J. Lasers 41 0115002 (in Chinese) [马维光, 赵刚, 付小芳, 李志新, 谭巍, 董磊, 张雷, 尹王保, 贾锁堂 2014 中国激光 41 0115002]

    [16]

    Leleux D P, Claps R, Chen W, Tittel F K, Harman T L 2002 Appl. Phys. B 74 85

    [17]

    Claps R, Englich F V, Leleux D P, Richter D, Tittel F K, Curl R F 2001 Appl. Opt. 40 4387

    [18]

    Riris H, Carlisle C B, Warren R E 1994 Appl. Opt. 33 5506

    [19]

    Li Z, Ma W, Fu X, Tan W, Zhao G, Dong L, Zhang L, Yin W, Jia S 2013 Appl. Phys. Express 6 072402

    [20]

    Li Z, Ma W, Fu X, Tan W, Zhao G, Dong L, Zhang L, Yin W, Jia S 2013 Opt. Express 21 17961

    [21]

    Kosterev A A, Malinovsky A L, Tittel F K, Gmachl C, Capasso F, Sivco D L, Baillargeon J N, Hutchinson A L, Cho A Y 2011 Appl. Opt. 40 5522

    [22]

    Chen W G, Wan F, Zou J X, Gu Z L, Zhou Q 2015 Chin. Phys. B 24 024206

    [23]

    HITRAN 2008 Database (Version 12.0)

    [24]

    Cheng B, Wang Z Y, Wu B, Xu A P, Wang Q Y, Xu Y F, Lin Q 2014 Chin. Phys. B 23 104222

  • [1] 宋会杰, 董绍武, 王翔, 姜萌, 章宇, 郭栋, 张继海. 基于最优控制理论的国产光抽运小铯钟频率控制算法.  , 2024, 73(6): 060201. doi: 10.7498/aps.73.20231866
    [2] 黄知秋, 张猛, 彭志敏, 王振, 杨乾锁. 注入光有限相干性对衰荡腔测试方法的影响及求解衰荡时间的强度积分法.  , 2023, 72(18): 184205. doi: 10.7498/aps.72.20230448
    [3] 熊枫, 彭志敏, 王振, 丁艳军, 吕俊复, 杜艳君. CO2/CO干扰下基于腔衰荡吸收光谱的痕量H2S浓度测量.  , 2023, 72(4): 043302. doi: 10.7498/aps.72.20221851
    [4] 饶冰洁, 张攀, 李铭坤, 杨西光, 闫露露, 陈鑫, 张首刚, 张颜艳, 姜海峰. 用于光腔衰荡光谱测量的多支路掺铒光纤飞秒光梳系统.  , 2022, 71(8): 084203. doi: 10.7498/aps.71.20212162
    [5] 王兴平, 赵刚, 焦康, 陈兵, 阚瑞峰, 刘建国, 马维光. 更正: 光学反馈线性腔衰荡光谱技术不确定性[ 2022, 71(12): 124201].  , 2022, 71(15): 159901. doi: 10.7498/aps.71.159901
    [6] 王兴平, 赵刚, 焦康, 陈兵, 阚瑞峰, 刘建国, 马维光. 光学反馈线性腔衰荡光谱技术不确定性.  , 2022, 71(12): 124201. doi: 10.7498/aps.70.20220186
    [7] 王兴平, 赵刚, 焦康, 陈兵, 阚瑞峰, 刘建国, 马维光. 光学反馈线性腔衰荡光谱技术不确定性研究.  , 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220186
    [8] 张玉燕, 殷东哲, 温银堂, 罗小元. 基于自适应Kalman滤波的平面阵列电容成像.  , 2021, 70(11): 118102. doi: 10.7498/aps.70.20210442
    [9] 宋会杰, 董绍武, 王翔, 章宇, 王燕平. 原子钟噪声变化时改进的Kalman滤波时间尺度算法.  , 2020, 69(17): 170201. doi: 10.7498/aps.69.20191920
    [10] 王振, 杜艳君, 丁艳军, 彭志敏. 基于傅里叶变换的波长扫描腔衰荡光谱.  , 2019, 68(20): 204204. doi: 10.7498/aps.68.20191062
    [11] 王金舵, 余锦, 貊泽强, 何建国, 代守军, 孟晶晶, 王晓东, 刘洋. 连续波腔衰荡光谱技术中模式筛选的数值方法.  , 2019, 68(24): 244201. doi: 10.7498/aps.68.20190844
    [12] 贾梦源, 赵刚, 周月婷, 刘建鑫, 郭松杰, 吴永前, 马维光, 张雷, 董磊, 尹王保, 肖连团, 贾锁堂. 基于噪声免疫腔增强光外差分子光谱技术实现光纤激光器到1530.58 nm NH3亚多普勒饱和光谱的频率锁定.  , 2018, 67(10): 104207. doi: 10.7498/aps.67.20172541
    [13] 康鹏, 孙羽, 王进, 刘安雯, 胡水明. 基于高精细度光腔锁频激光的分子吸收光谱测量.  , 2018, 67(10): 104206. doi: 10.7498/aps.67.20172532
    [14] 黄华, 吴洋, 刘振帮, 袁欢, 何琥, 李乐乐, 李正红, 金晓, 马弘舸. 锁频锁相的高功率微波器件技术研究.  , 2018, 67(8): 088402. doi: 10.7498/aps.67.20172684
    [15] 林旭, 罗志才. 一种新的卫星钟差Kalman滤波噪声协方差估计方法.  , 2015, 64(8): 080201. doi: 10.7498/aps.64.080201
    [16] 胡仁志, 王丹, 谢品华, 凌六一, 秦敏, 李传新, 刘建国. 二极管激光腔衰荡光谱测量大气NO3自由基.  , 2014, 63(11): 110707. doi: 10.7498/aps.63.110707
    [17] 刘洋洋, 廉保旺, 赵宏伟, 刘亚擎. Kalman滤波辅助的室内伪卫星相对定位算法.  , 2014, 63(22): 228402. doi: 10.7498/aps.63.228402
    [18] 薛宇豪, 周军, 何兵, 李震, 漆云凤, 刘驰, 楼祺洪. 基于空间滤波的光纤激光被动相位锁定技术研究.  , 2010, 59(11): 7869-7874. doi: 10.7498/aps.59.7869
    [19] 曹 琳, 王春梅, 陈扬骎, 杨晓华. 光外差腔衰荡光谱理论研究.  , 2006, 55(12): 6354-6359. doi: 10.7498/aps.55.6354
    [20] 赵宏太, 柳晓军, 曹俊文, 彭良友, 詹明生. Ba原子6s6p1P1←6s6s1S0跃迁的光腔衰荡光谱.  , 2001, 50(7): 1274-1278. doi: 10.7498/aps.50.1274
计量
  • 文章访问数:  6517
  • PDF下载量:  259
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-29
  • 修回日期:  2016-04-12
  • 刊出日期:  2016-06-05

/

返回文章
返回
Baidu
map