搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温条件下Ga3PO7晶体热学及声表面波性质的理论研究

郝娟 周广刚 马跃 黄文奇 张鹏 卢贵武

引用本文:
Citation:

高温条件下Ga3PO7晶体热学及声表面波性质的理论研究

郝娟, 周广刚, 马跃, 黄文奇, 张鹏, 卢贵武

Theoretical study on thermal and acoustic surface wave properties of Ga3PO7 crystal at high temperature

Hao Juan, Zhou Guang-Gang, Ma Yue, Huang Wen-Qi, Zhang Peng, Lu Gui-Wu
PDF
导出引用
  • 高温压电晶体是许多机电器件必需的一种多功能材料, Ga3PO7晶体的居里温度高达1364 ℃, 可应用于高温极限条件. 但是预测高温极限条件下晶体的结构以及物理性质的问题采用实验研究的手段非常困难, 而理论上的预测未见研究. 本文采用密度泛函-准谐振近似理论计算了温度在0-1200 ℃范围内Ga3PO7 晶体的结构常数和热学性质, 结果表明Ga3PO7晶体的晶格常数a和c随温度的升高呈线性增大, 且c方向受温度影响更为显著; 晶体的密度随温度的升高而减小, 计算的a 和c方向平均热膨胀系数分别为1.6710-6 K-1和3.5810-6 K-1, 高温区定压热容为2.067 J/gK, 与实验值一致. 计算了从常温到高温下该晶体的弹性常数以及体弹性模量的变化, 研究了高温条件下的声表面波特性, 发现随着温度的升高, 声表面波速度浮动较小, 而机电耦合系数略有增大; 在传播角为151 时该晶体具有较好的温度稳定性且机电耦合系数达到最大值, 这表明Ga3PO7 晶体是一种有望应用于高温环境下的压电晶体.
    The high-temperature piezoelectric crystal Ga3PO7is a versatile functional material widely used in many electromechanical devices. As the Curie temperature of this crystal is as high as 1346 ℃, it can break through the current temperature limitations(1200 ℃) and then be used in extremely high-temperature condition. However, it is very difficult to explore its properties in such a high-temperature environment. Moreover, the relevant theoretical research has not been reported to date. Aiming at this problem, the density function theory combined with quasi harmonic approximation theory is used to investigate the structural, thermal and surface acoustic wave (SAW) properties of Ga3PO7. Firstly, the Gibbs energies of Ga3PO7 crystal with different stains are calculated, and the equilibrium structures of Ga3PO7 crystal at different temperatures (from 0 ℃ to 1200 ℃) are found according to minimal energy principle. Secondly, based on the result above, we optimize Ga3PO7 crystal at different temperatures, and then, the thermal and elastic properties of Ga3PO7 crystal within 0-1200 ℃ are calculated using CASTEP package based on the density functional theory in the generalized gradient approximation. The results show that its lattice constants increase almost linearly as temperature increases while its density decreases. Owing to anisotropy, its lattice constant along the c axis increases much more greatly than along the a axis. The coefficients of thermal expansion along the a and c axis are evaluated to be 1.6710-6 K-1 and 3.5810-6 K-1, respectively, and the volumetric heat capacity is evaluated to be 2.067 J/gK. These values all agree well with the experimental values. Finally, the elastic constants, bulk modulus and SAW properties of Ga3PO7 crystal at different temperatures (from 0 ℃ to 1200 ℃) are calculated. The results show that the bulk modulus can reach 175 GPa, and it changes very little as temperature increases. The fluctuation of elastic constants has slight influences on SAW velocity and the electric-mechanical coupling factor. When the propagation angle is 151, it possesses the stablest SAW properties and the largest electric-mechanical coupling factor which can reach 0.7%. The comprehensive analyses of the thermal, mechanical and SAW properties show that Y-cut Ga3PO7 possesses a greater potential application in high temperature environment.
      通信作者: 周广刚, bjpeuzgg@163.com,954337726@qq.com
    • 基金项目: 国家自然科学基金(批准号: 51372140)和中国石油大学(北京)优秀青年教师研究项目(批准号: 2462015YQ0603)资助的课题.
      Corresponding author: Zhou Guang-Gang, bjpeuzgg@163.com,954337726@qq.com
    • Funds: Project supported by the National Nature Science Foundation of China(Grant No: 51372140),and China University of Petroleum (Beijing) Higher Education Young Elite Teacher Project (No: 2462015YQ0603).
    [1]

    Rong L M, Yang M H, Cai G R, Ji H, Li W, Yang Y 2006 Integr. Ferroelectr. 80 289

    [2]

    Zhang Q, Qu M, Sheng J G 2005 Piezoelectr. Acoustoopt. 27 21 (in Chinese) [张强, 瞿敏, 沈建国 2005 压电与声光 27 21]

    [3]

    Lu Q, Luo L H, Huang Z Z, Cheng L, Song F S 2008 China Ceramics. 44 49 (in Chinese) [卢泉, 罗凌虹, 黄祖志, 程亮, 宋福生 2008 中国陶瓷 44 49]

    [4]

    Hang W, Zhou L B, Shimizu J, Yamamoto T, Yuan J L 2012 Eng. Mater. 523 7

    [5]

    Hall D A 2001 J. Mater. Sci. 36 4575

    [6]

    Wu W, Greve D W, Oppenheim I J 2008 Proceedings of IEEE International Ultrasonics Symposium Beijing, China, Nov. 2-5, 2008 p1018

    [7]

    Hempel J, Zukowski E, Berndt M, Reindl L M, Wilde J 2012 Proceedings of 4th Electronic System-Integration Technology Conference (Estc) Amsterdam, America, Sept. 17-22, 2012 p4644

    [8]

    Zhang S, Wu F Q, Wu W D 2008 Acta Phys. Sin. 57 5020 (in Chinese) [张姗, 吴福全, 吴闻迪 2008 57 5020]

    [9]

    Zhu H B, Wu Z B, Liu G Q, Xi K, Li S S, Dong Y Y 2013 Acta Phys. Sin. 62 014205 (in Chinese) [朱华兵, 吴正斌, 刘国强, 席奎, 李闪闪, 董洋洋 2013 62 014205]

    [10]

    Pastureaud T, Solal M, Biasse B, Aspar B, Briot J B, Daniau W, Steichen W, Lardat R, Laude V, Laens A, Friedt J M, Ballandras S 2007 IEEE Trans. Ultrason. Ferr. 54 870

    [11]

    Liu T, Yu K X, Wang P 2010 P. Soc. Photo-Opt. Ins. 7658 78

    [12]

    Reinhardt A, Benaissa L, David J B, Lamard N, Kovacova V, Boudou N, Defas E 2014 Proceedings of 2014 IEEE International Ultrasonics Symposium (Ius) Chicago, America, Sept. 3-6, 2014 p773

    [13]

    Strossner U, Peters A, Mlynek J, Schiller S, Meyn J P, Wallenstein R 1999 Opt. Lett. 24 1602

    [14]

    Sheem S K, Burns W K, Milton A F 1978 Opt. Lett. 3 76

    [15]

    Tan Y Q 2014 Ph. D. Dissertation (Jinan: Shandong University) (in Chinese) [谭永强 2014 博士学位论文(济南: 山东大学)]

    [16]

    He X K, Zeng L B, Wu Q S, Zhang L Y, Zhu K, Liu Y L 2012 Chin. Phys. B 21 067081-1

    [17]

    Schiopu P, Chilibon I, Grosu N, Craciun A 2015 Proceedings of The 7th International Conference on Advanced Topics in Optoelectronics, Microelectronics and Nanotechnologies Constanta, Romania, Aug. 21-24, 2014 p49

    [18]

    Lukyanov D, Shevchenko S, Kukaev A, Filippova E, Khivrich M 2015 Procedings of 2014 International Conference on Mechanical Engineering, Automation and Control Systems (Meacs) Tomsk, Russia, Oct. 16-18, 2014 p389

    [19]

    Boudin S, Lii K H 1998 Acta Crystallogr. C 54 5

    [20]

    Xu G, Li J, Guo Y, Han S, Wang J 2010 Cryst. Res. Technol. 45 600

    [21]

    Yamanouchi K, Kotani K, Odagawa H, Cho Y S 2000 Jpn. J. Appl. Phys. 39 3032

    [22]

    Xu G G 2009 Ph. D. Dissertation (Jinan: Shandong University) (in Chinese) [徐国纲 2009 博士学位论文(济南: 山东大学)]

    [23]

    Guo Y J 2009 Ph. D. Dissertation (Jinan: Shandong University) (in Chinese) [郭永解 2013 博士学位论文(济南: 山东大学)]

    [24]

    Ren J, Ma Z, He C, Sa R, Li Q, Wu K 2015 Comp. Mater. Sci. 106 1

    [25]

    Gao Y N, Sun W, Huang W Q, Wu C, Lu G W 2013 J. Synthetic Crystals 9 1767 (in Chinese) [高亚南, 孙为, 黄文奇, 吴冲, 卢贵武 2013 人工晶体学报 9 1767]

    [26]

    Wen B, Shao T J, Melnik R, Kawazoe Y, Tian Y J 2013 J. Appl. Phys. 113 103501

    [27]

    Zhang W, Chen Q Y, Zeng Z Y, Cai L C 2015 Chin. Phys. B 24 107101

    [28]

    Li Z L, Cheng X L 2014 Chin. Phys. B 23 046201

    [29]

    Sang D D, Wang Q L, Hang C, Chen K, Pan Y W 2015 Chin. Phys. B 24 077104

    [30]

    Peng J H, Zeng Q F, Xie C W, Zhu K J, Tan J H 2015 Acta Phys. Sin. 64 236102 (in Chinese) [彭军辉, 曾庆丰, 谢聪伟, 朱开金, 谭俊华 2015 64 236102]

    [31]

    Shao T J, Wen B, Melnik R, Yao S, Kawazoe Y, Tian Y J 2012 J. Appl. Phys. 111 083525

    [32]

    Wang J F, Chen W Z, Jiang Z Y, Zhang X D, Si L 2012 Chin. Phys. B 21 077102

    [33]

    Li Q, Huang D H, Cao Q L, Wang F H, Cai L C, Zhang X L, Jing G Q 2012 Chin. Phys. B 21 127102

    [34]

    Zhai D, Wei Z, Feng Z F, Shao X H, Zhang P 2014 Acta Phys. Sin. 20 206501

    [35]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys-Condens. Mat. 14 2717

    [36]

    Huang W Q, Yang H 2010 Proceedings of the 7th National Conference on Chinese Functional Materials and Applications Changsha, China, October 15-18, 2010 p1085

    [37]

    Zhou G G, Lu G W, Wu C, Huang W Q, Yang H 2012 Mater. Sci. Tecno. 560 66

    [38]

    Qiu B B, Lu G W, Jiao Y Q, Wu C, Zhou G G, Feng C, Hung W Q, Yang H 2011 J. Alloy. Compd. 509 5789

    [39]

    Guo Y J, Li J, Wang J Y, Han S J, Wang Y Z 2011 J. Chin. Ceram. Soc. 39 1339 (in Chinese) [郭永解, 李静, 王继扬, 韩树娟, 王永政 2011 硅酸盐学报 39 1339]

    [40]

    Ganeshan S 2011 Ph. D. Dissertation (Pennsylvania State: The Pennsylvania State University)

    [41]

    Labguerie P, Harb M, Baraille I, Rrat M 2010 Phys. Rev. B 81 1718

    [42]

    Mohammadou M, Yves N, Bartolomeo C, Ross B, Roberto D 2005 J. Phys-Condens. Mat. 17 535

    [43]

    Labguerie P, Pascale F, Mrawa M, Zicovich-Wilson C, Makhouki N, Dovesi R 2005 Phys. Condens. Mat. 43 453

  • [1]

    Rong L M, Yang M H, Cai G R, Ji H, Li W, Yang Y 2006 Integr. Ferroelectr. 80 289

    [2]

    Zhang Q, Qu M, Sheng J G 2005 Piezoelectr. Acoustoopt. 27 21 (in Chinese) [张强, 瞿敏, 沈建国 2005 压电与声光 27 21]

    [3]

    Lu Q, Luo L H, Huang Z Z, Cheng L, Song F S 2008 China Ceramics. 44 49 (in Chinese) [卢泉, 罗凌虹, 黄祖志, 程亮, 宋福生 2008 中国陶瓷 44 49]

    [4]

    Hang W, Zhou L B, Shimizu J, Yamamoto T, Yuan J L 2012 Eng. Mater. 523 7

    [5]

    Hall D A 2001 J. Mater. Sci. 36 4575

    [6]

    Wu W, Greve D W, Oppenheim I J 2008 Proceedings of IEEE International Ultrasonics Symposium Beijing, China, Nov. 2-5, 2008 p1018

    [7]

    Hempel J, Zukowski E, Berndt M, Reindl L M, Wilde J 2012 Proceedings of 4th Electronic System-Integration Technology Conference (Estc) Amsterdam, America, Sept. 17-22, 2012 p4644

    [8]

    Zhang S, Wu F Q, Wu W D 2008 Acta Phys. Sin. 57 5020 (in Chinese) [张姗, 吴福全, 吴闻迪 2008 57 5020]

    [9]

    Zhu H B, Wu Z B, Liu G Q, Xi K, Li S S, Dong Y Y 2013 Acta Phys. Sin. 62 014205 (in Chinese) [朱华兵, 吴正斌, 刘国强, 席奎, 李闪闪, 董洋洋 2013 62 014205]

    [10]

    Pastureaud T, Solal M, Biasse B, Aspar B, Briot J B, Daniau W, Steichen W, Lardat R, Laude V, Laens A, Friedt J M, Ballandras S 2007 IEEE Trans. Ultrason. Ferr. 54 870

    [11]

    Liu T, Yu K X, Wang P 2010 P. Soc. Photo-Opt. Ins. 7658 78

    [12]

    Reinhardt A, Benaissa L, David J B, Lamard N, Kovacova V, Boudou N, Defas E 2014 Proceedings of 2014 IEEE International Ultrasonics Symposium (Ius) Chicago, America, Sept. 3-6, 2014 p773

    [13]

    Strossner U, Peters A, Mlynek J, Schiller S, Meyn J P, Wallenstein R 1999 Opt. Lett. 24 1602

    [14]

    Sheem S K, Burns W K, Milton A F 1978 Opt. Lett. 3 76

    [15]

    Tan Y Q 2014 Ph. D. Dissertation (Jinan: Shandong University) (in Chinese) [谭永强 2014 博士学位论文(济南: 山东大学)]

    [16]

    He X K, Zeng L B, Wu Q S, Zhang L Y, Zhu K, Liu Y L 2012 Chin. Phys. B 21 067081-1

    [17]

    Schiopu P, Chilibon I, Grosu N, Craciun A 2015 Proceedings of The 7th International Conference on Advanced Topics in Optoelectronics, Microelectronics and Nanotechnologies Constanta, Romania, Aug. 21-24, 2014 p49

    [18]

    Lukyanov D, Shevchenko S, Kukaev A, Filippova E, Khivrich M 2015 Procedings of 2014 International Conference on Mechanical Engineering, Automation and Control Systems (Meacs) Tomsk, Russia, Oct. 16-18, 2014 p389

    [19]

    Boudin S, Lii K H 1998 Acta Crystallogr. C 54 5

    [20]

    Xu G, Li J, Guo Y, Han S, Wang J 2010 Cryst. Res. Technol. 45 600

    [21]

    Yamanouchi K, Kotani K, Odagawa H, Cho Y S 2000 Jpn. J. Appl. Phys. 39 3032

    [22]

    Xu G G 2009 Ph. D. Dissertation (Jinan: Shandong University) (in Chinese) [徐国纲 2009 博士学位论文(济南: 山东大学)]

    [23]

    Guo Y J 2009 Ph. D. Dissertation (Jinan: Shandong University) (in Chinese) [郭永解 2013 博士学位论文(济南: 山东大学)]

    [24]

    Ren J, Ma Z, He C, Sa R, Li Q, Wu K 2015 Comp. Mater. Sci. 106 1

    [25]

    Gao Y N, Sun W, Huang W Q, Wu C, Lu G W 2013 J. Synthetic Crystals 9 1767 (in Chinese) [高亚南, 孙为, 黄文奇, 吴冲, 卢贵武 2013 人工晶体学报 9 1767]

    [26]

    Wen B, Shao T J, Melnik R, Kawazoe Y, Tian Y J 2013 J. Appl. Phys. 113 103501

    [27]

    Zhang W, Chen Q Y, Zeng Z Y, Cai L C 2015 Chin. Phys. B 24 107101

    [28]

    Li Z L, Cheng X L 2014 Chin. Phys. B 23 046201

    [29]

    Sang D D, Wang Q L, Hang C, Chen K, Pan Y W 2015 Chin. Phys. B 24 077104

    [30]

    Peng J H, Zeng Q F, Xie C W, Zhu K J, Tan J H 2015 Acta Phys. Sin. 64 236102 (in Chinese) [彭军辉, 曾庆丰, 谢聪伟, 朱开金, 谭俊华 2015 64 236102]

    [31]

    Shao T J, Wen B, Melnik R, Yao S, Kawazoe Y, Tian Y J 2012 J. Appl. Phys. 111 083525

    [32]

    Wang J F, Chen W Z, Jiang Z Y, Zhang X D, Si L 2012 Chin. Phys. B 21 077102

    [33]

    Li Q, Huang D H, Cao Q L, Wang F H, Cai L C, Zhang X L, Jing G Q 2012 Chin. Phys. B 21 127102

    [34]

    Zhai D, Wei Z, Feng Z F, Shao X H, Zhang P 2014 Acta Phys. Sin. 20 206501

    [35]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys-Condens. Mat. 14 2717

    [36]

    Huang W Q, Yang H 2010 Proceedings of the 7th National Conference on Chinese Functional Materials and Applications Changsha, China, October 15-18, 2010 p1085

    [37]

    Zhou G G, Lu G W, Wu C, Huang W Q, Yang H 2012 Mater. Sci. Tecno. 560 66

    [38]

    Qiu B B, Lu G W, Jiao Y Q, Wu C, Zhou G G, Feng C, Hung W Q, Yang H 2011 J. Alloy. Compd. 509 5789

    [39]

    Guo Y J, Li J, Wang J Y, Han S J, Wang Y Z 2011 J. Chin. Ceram. Soc. 39 1339 (in Chinese) [郭永解, 李静, 王继扬, 韩树娟, 王永政 2011 硅酸盐学报 39 1339]

    [40]

    Ganeshan S 2011 Ph. D. Dissertation (Pennsylvania State: The Pennsylvania State University)

    [41]

    Labguerie P, Harb M, Baraille I, Rrat M 2010 Phys. Rev. B 81 1718

    [42]

    Mohammadou M, Yves N, Bartolomeo C, Ross B, Roberto D 2005 J. Phys-Condens. Mat. 17 535

    [43]

    Labguerie P, Pascale F, Mrawa M, Zicovich-Wilson C, Makhouki N, Dovesi R 2005 Phys. Condens. Mat. 43 453

  • [1] 黄铭贤, 胡文彬, 白飞明. 声表面波-自旋波耦合及磁声非互易性器件.  , 2024, 73(15): 158501. doi: 10.7498/aps.73.20240462
    [2] 谭自豪, 孙小伟, 宋婷, 温晓东, 刘禧萱, 刘子江. 球形复合柱表面波声子晶体的带隙特性仿真.  , 2021, 70(14): 144301. doi: 10.7498/aps.70.20210165
    [3] 秦晨, 余辉, 叶乔波, 卫欢, 江晓清. 基于绝缘体上硅的一种改进的Mach-Zehnder声光调制器.  , 2016, 65(1): 014304. doi: 10.7498/aps.65.014304
    [4] 王雪飞, 马静婕, 焦照勇, 张现周. Ti3(SnxAl1-x)C2固溶体电学、力学和热学性能的理论研究.  , 2016, 65(20): 206201. doi: 10.7498/aps.65.206201
    [5] 曾伟, 王海涛, 田贵云, 胡国星, 汪文. 研究激光激发的声表面波与材料近表面缺陷的振荡效应.  , 2015, 64(13): 134302. doi: 10.7498/aps.64.134302
    [6] 叶振强, 曹炳阳, 过增元. 石墨烯的声子热学性质研究.  , 2014, 63(15): 154704. doi: 10.7498/aps.63.154704
    [7] 黄虎. 海洋表面波的3-4-5波共振守恒理论.  , 2013, 62(13): 139201. doi: 10.7498/aps.62.139201
    [8] 钱莉荣, 杨保和. ZnO薄膜/金刚石在不同激励条件下声表面波特性的计算与分析.  , 2013, 62(11): 117701. doi: 10.7498/aps.62.117701
    [9] 周振凯, 韦利明, 丰杰. ZnO/Diamond/Si结构中声表面波传播特性分析.  , 2013, 62(10): 104601. doi: 10.7498/aps.62.104601
    [10] 袁玲, 孙凯华, 崔一平, 沈中华, 倪晓武. 由于表面粗糙引起的激光声表面波色散的实验和理论研究.  , 2012, 61(1): 014210. doi: 10.7498/aps.61.014210
    [11] 吴叶青, 苏良碧, 徐军, 陈红兵, 李红军, 郑丽和, 王庆国. Yb:CaF2-SrF2激光晶体光谱性能以及热学性能的研究.  , 2012, 61(17): 177801. doi: 10.7498/aps.61.177801
    [12] 张致龙, 陈玉红, 任宝兴, 张材荣, 杜瑞, 王伟超. (HMgN3)n(n=15)团簇结构与性质的密度泛函理论研究.  , 2011, 60(12): 123601. doi: 10.7498/aps.60.123601
    [13] 葛桂贤, 闫红霞, 井群, 张建军. 密度泛函理论对AunSc3(n=1—7)团簇结构和性质的研究.  , 2011, 60(3): 033101. doi: 10.7498/aps.60.033101
    [14] 陈玉红, 康 龙, 张材荣, 罗永春, 元丽华, 李延龙. (Ca3N2)n(n=1—4)团簇结构与性质的密度泛函理论研究.  , 2008, 57(10): 6265-6270. doi: 10.7498/aps.57.6265
    [15] 王敬时, 徐晓东, 刘晓峻, 许钢灿. 利用激光超声技术研究表面微裂纹缺陷材料的低通滤波效应.  , 2008, 57(12): 7765-7769. doi: 10.7498/aps.57.7765
    [16] 杨 光, Santos Paulo V.. 磁控溅射制备ZnO薄膜及其声表面波特性.  , 2007, 56(6): 3515-3520. doi: 10.7498/aps.56.3515
    [17] 肖 夏, 尤学一, 姚素英. 表征超大规模集成电路互连纳米薄膜硬度特性的声表面波的频散特性.  , 2007, 56(4): 2428-2433. doi: 10.7498/aps.56.2428
    [18] 杨 光, P. V. Santos. 声表面波对GaAs(110)量子阱发光特性的调制.  , 2006, 55(8): 4327-4331. doi: 10.7498/aps.55.4327
    [19] 陈中钧, 肖海燕, 祖小涛. MgS晶体结构性质的密度泛函研究.  , 2005, 54(11): 5301-5307. doi: 10.7498/aps.54.5301
    [20] 章德. 用倒相换能器抑制声表面波谐振滤波器的直达讯号.  , 1978, 27(3): 349-352. doi: 10.7498/aps.27.349
计量
  • 文章访问数:  6136
  • PDF下载量:  173
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-08
  • 修回日期:  2016-03-15
  • 刊出日期:  2016-06-05

/

返回文章
返回
Baidu
map