搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

D3h和D4h等离激元超分子的Fano共振光谱的 子集合分解解释

李梦君 方晖 李小明 袁小聪

引用本文:
Citation:

D3h和D4h等离激元超分子的Fano共振光谱的 子集合分解解释

李梦君, 方晖, 李小明, 袁小聪

Subgroup decomposition analyses of D3h and D4h plasmonic metamolecule Fano resonance spectrum

Li Meng-Jun, Fang Hui, Li Xiao-Ming, Yuan Xiao-Cong
PDF
导出引用
  • 针对D3h和D4h对称构型金属纳米多颗粒集合即等离激元超分子表面等离激元共振光谱的子集合分解及其相对应的Fano共振光谱低谷的产生机理, 本文运用群论的方法做出了详细的分析研究. 运用与群论中求解分子简正振动模式类似的方法, 推导证实了在线偏振光入射时, Dnh环形多颗粒只有2个电偶极表面等离激元共振模式, 增加中心颗粒会使模式增加1个. 对D3h和D4h等离激元超分子的表面等离激元共振模式进行不可约表示基向量正交分解分析表明, Fano共振光谱低谷是由于两个起主要作用的相邻模式包含有共同的正交基向量, 并形成相消干涉而产生. 这进一步验证了Fano共振光谱低谷的起源除传统观点(即源自于宽频超辐射亮模式和窄频低辐射暗模式之间的耦合)之外的另一种解释视角.
    In recent decades, research about surface plasmon polariton (SPP) has earned its popularity in nanotechnology with many theoretical achievements, much progress in metal nanostructure manufacturing, spectral analyzing, biomedicine ultrasensing, etc. Group theory is an effective tool for analyzing the spectra of symmetrical organized multiparticles (dubbed as plasmonic metamolecule). Recently, SPP Fano resonance in nanostructure either from plasmonic metamolecules or from symmetry-breaking has attracted much attention. Regarding to the subgroup decomposition analysis of the D3h and D4h plasmonic metamolecule surface plasmon resonance spectra and the mechanism of forming the Fano resonance spectral dip, this paper proposes an explanation method based on group theory.By using a similar group theory approach to constructing the molecular vibration normal modes, the method to build the dipolar SPP symmetric modes of plasmonic metamolecules is established. It is confirmed that under the linear polarization excitation there exists only two dipolar SPP symmetric modes for a ring shaped Dnh plasmonic metamolecule, while adding the center particle will merely add an extra independent symmetric mode. For the D3h and D4h plasmonic metamolecule, it is found that there are two dominant eigenmodes i. e., one is composed by adding two symmetric modes and the other by subtracting two symmetric modes. The decomposition analysis further reveals that the negative coefficient of the symmetric mode for forming the short wavelength eigenmode for D3h tetramer plasmonic metamolecules is much smaller than that for D4h pentamer plasmonic metamolecules, thereby explaining that the Fano resonance dip of the pentamer is sharper than that of the tetramer. It is worth noting that the group theory can provide some guidance for building the symmetric modes and the SPP eigenmodes, but is unable to determine the coefficient of each symmetric mode.As for the origin of Fano resonance dip, so far there have existed two different perspectives: one is the traditional viewpoint, i.e., the Fano resonance dip is formed due to the coupling of the wideband superradiant bright mode with the narrowband subradiant dark mode, and the other is that the Fano resonance dip is formed by the destructive interference between two neighboring eigenmodes. The decomposition analysis described in this paper actually can unify these two perspectives.
      通信作者: 方晖, fhui79@szu.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2015CB352004)、高等学校博士学科点专项科研基金(批准号: 20130031110036)和天津市应用基础与前沿技术研究计划(批准号: 14JCYBJC16600) 资助的课题.
      Corresponding author: Fang Hui, fhui79@szu.edu.cn
    • Funds: Project supported by The National Basic Research Program of China (Grant No. 2015CB352004), the Sepecialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130031110036), and the Tianjin Municipal Science and Technology Commission, China (Grant No. 14JCYBJC16600).
    [1]

    Halas N J 2010 Nano Lett. 10 3816

    [2]

    Zou W B, Zhou J, Jin L, Zhang H P 2012 Acta Phys. Sin. 61 097805 (in Chinese) [邹伟博, 周骏, 金理, 张昊鹏 2012 61 097805]

    [3]

    Halas N J, Lal S, Chang W S, Link S, Nordlander P 2011 Chem. Rev. 111 3913

    [4]

    Wang H, Brandl D W, Nordlander P, Halas N J 2007 Acc. Chem. Res. 40 53

    [5]

    Hentschel M, Saliba M, Vogelgesang R, Giessen H, Alivisatos A P, Liu N 2010 Nano Lett. 10 2721

    [6]

    Brandl D W, Mirin N A, Nordlander P 2006 J. Phys. Chem. B 110 12302

    [7]

    Chuntonov L, Haran G 2013 MRS Bull. 38 642

    [8]

    Chuntonov L, Haran G 2013 Nano Lett. 13 1285

    [9]

    Tang D H, Ding W Q 2014 Chin. Phys. Lett. 31 057301

    [10]

    Dong Z G, Liu H, Xu M X, Li T, Wang S M, Cao J X, Zhu S N, Zhang X 2010 Opt. Express 18 22412

    [11]

    Li J B, He M D, Wang X J, Peng X F, Chen L Q 2014 Chin. Phys. B. 23 067302

    [12]

    Chen Z Q, Qi J W, Chen J, Li Y D, Hao Z Q, Lu W Q, Xu J J, Sun Q 2013 Chin. Phys. Lett. 30 057301

    [13]

    Lukyanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H, Chong C T 2010 Nature Mater. 9 707

    [14]

    Hentschel M, Dregely D, Vogelgesang R, Giessen H, Liu N 2011 ACS Nano. 5 2042

    [15]

    Lassiter J B, Sobhani H, Knight M W, Mielczarek W S, Nordlander P, Halas N J 2012 Nano Lett. 12 1058

    [16]

    Rahmani M, Lei D Y, Giannini V, Lukiyanchuk B, Ranjbar M, Liew T Y F, Hong M H, Maier S A 2012 Nano Lett. 12 2101

    [17]

    Hopkins B, Poddubny A N, Miroshnichenko A E, Kivshar Y S 2013 Phys. Rev. A 88 053819

    [18]

    Harris D C, Bertolucci M D 1987 Symmetry and Spectroscopy (Oxford: Oxford University Press) pp135-151

    [19]

    Frimmer M, Coenen T, Koenderink F 2012 Phys. Rev. Lett. 108 077404

  • [1]

    Halas N J 2010 Nano Lett. 10 3816

    [2]

    Zou W B, Zhou J, Jin L, Zhang H P 2012 Acta Phys. Sin. 61 097805 (in Chinese) [邹伟博, 周骏, 金理, 张昊鹏 2012 61 097805]

    [3]

    Halas N J, Lal S, Chang W S, Link S, Nordlander P 2011 Chem. Rev. 111 3913

    [4]

    Wang H, Brandl D W, Nordlander P, Halas N J 2007 Acc. Chem. Res. 40 53

    [5]

    Hentschel M, Saliba M, Vogelgesang R, Giessen H, Alivisatos A P, Liu N 2010 Nano Lett. 10 2721

    [6]

    Brandl D W, Mirin N A, Nordlander P 2006 J. Phys. Chem. B 110 12302

    [7]

    Chuntonov L, Haran G 2013 MRS Bull. 38 642

    [8]

    Chuntonov L, Haran G 2013 Nano Lett. 13 1285

    [9]

    Tang D H, Ding W Q 2014 Chin. Phys. Lett. 31 057301

    [10]

    Dong Z G, Liu H, Xu M X, Li T, Wang S M, Cao J X, Zhu S N, Zhang X 2010 Opt. Express 18 22412

    [11]

    Li J B, He M D, Wang X J, Peng X F, Chen L Q 2014 Chin. Phys. B. 23 067302

    [12]

    Chen Z Q, Qi J W, Chen J, Li Y D, Hao Z Q, Lu W Q, Xu J J, Sun Q 2013 Chin. Phys. Lett. 30 057301

    [13]

    Lukyanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H, Chong C T 2010 Nature Mater. 9 707

    [14]

    Hentschel M, Dregely D, Vogelgesang R, Giessen H, Liu N 2011 ACS Nano. 5 2042

    [15]

    Lassiter J B, Sobhani H, Knight M W, Mielczarek W S, Nordlander P, Halas N J 2012 Nano Lett. 12 1058

    [16]

    Rahmani M, Lei D Y, Giannini V, Lukiyanchuk B, Ranjbar M, Liew T Y F, Hong M H, Maier S A 2012 Nano Lett. 12 2101

    [17]

    Hopkins B, Poddubny A N, Miroshnichenko A E, Kivshar Y S 2013 Phys. Rev. A 88 053819

    [18]

    Harris D C, Bertolucci M D 1987 Symmetry and Spectroscopy (Oxford: Oxford University Press) pp135-151

    [19]

    Frimmer M, Coenen T, Koenderink F 2012 Phys. Rev. Lett. 108 077404

  • [1] 陈钇成, 张成龙, 张丽超, 祁志美. InSb光栅耦合的太赫兹表面等离激元共振传感方法.  , 2024, 73(9): 098701. doi: 10.7498/aps.73.20231904
    [2] 井建迎, 刘琨, 吴张羿, 刘玥萌, 江俊峰, 徐天华, 晏伟铖, 熊艺扬, 战晓寒, 肖璐, 刘津畅, 刘铁根. 基于紫磷增敏的即插即用式双通道光纤表面等离激元共振折射率计.  , 2023, 72(21): 214206. doi: 10.7498/aps.72.20231110
    [3] 厉桂华, 张梦雅, 马慧, 田悦, 焦安欣, 郑林启, 王畅, 陈明, 刘向东, 李爽, 崔清强, 李冠华. 低温促进表面等离激元共振效应及肌酐的超灵敏表面增强拉曼散射探测.  , 2022, 71(14): 146101. doi: 10.7498/aps.71.20220151
    [4] 陈颖, 李美洁, 赵蒙, 王建坤. 基于群论的晶格扰动介质纳米孔阵列多重Fano共振机理及演变.  , 2022, 71(10): 107801. doi: 10.7498/aps.71.20212375
    [5] 周利, 王取泉. 等离激元共振能量转移与增强光催化研究进展.  , 2019, 68(14): 147301. doi: 10.7498/aps.68.20190276
    [6] 吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆. 石墨烯等离激元增强红外光谱.  , 2019, 68(14): 148103. doi: 10.7498/aps.68.20190903
    [7] 朱旭鹏, 石惠民, 张轼, 陈智全, 郑梦洁, 王雅思, 薛书文, 张军, 段辉高. 表面等离激元耦合体系及其光谱增强应用.  , 2019, 68(14): 147304. doi: 10.7498/aps.68.20190782
    [8] 冯仕靓, 王靖宇, 陈舒, 孟令雁, 沈少鑫, 杨志林. 表面等离激元“热点”的可控激发及近场增强光谱学.  , 2019, 68(14): 147801. doi: 10.7498/aps.68.20190305
    [9] 蒋行, 周玉荣, 刘丰珍, 周玉琴. 后退火处理对铟锡氧化物表面等离激元共振特性的影响.  , 2018, 67(17): 177802. doi: 10.7498/aps.67.20180435
    [10] 黄志芳, 倪亚贤, 孙华. 柱状磁光颗粒的局域表面等离激元共振及尺寸效应.  , 2016, 65(11): 114202. doi: 10.7498/aps.65.114202
    [11] 张文平, 马忠元, 徐骏, 徐岭, 李伟, 陈坤基, 黄信凡, 冯端. 纳米银六角阵列在掺氧氮化硅中的局域表面等离激元共振特性仿真.  , 2015, 64(17): 177301. doi: 10.7498/aps.64.177301
    [12] 王玥, 刘丽炜, 胡思怡, 李其扬, 孙振皓, 苗馨卉, 杨小川, 张喜和. 基于COMSOL Multiphysics对Cu2S量子点的表面等离激元共振模拟研究.  , 2013, 62(19): 197803. doi: 10.7498/aps.62.197803
    [13] 张兴坊, 闫昕. 金纳米球壳表面等离激元共振波长调谐特性研究.  , 2013, 62(3): 037805. doi: 10.7498/aps.62.037805
    [14] 徐常伟, 朱峰, 刘丽娜, 牛大鹏. 群论在对称结构电磁散射问题中的应用.  , 2013, 62(16): 164102. doi: 10.7498/aps.62.164102
    [15] 邹伟博, 周骏, 金理, 张昊鹏. 金纳米球壳对的局域表面等离激元共振特性分析.  , 2012, 61(9): 097805. doi: 10.7498/aps.61.097805
    [16] 丛超, 吴大建, 刘晓峻, 李勃. 金银三层纳米管局域表面等离激元共振特性研究.  , 2012, 61(3): 037301. doi: 10.7498/aps.61.037301
    [17] 丛超, 吴大建, 刘晓峻. 椭圆截面金纳米管的局域表面等离激元共振特性研究.  , 2011, 60(4): 046102. doi: 10.7498/aps.60.046102
    [18] 黄永畅, 何斌, 黄昌宇, 杨士林, 宋加民. 因果代数及其在物理学中的应用.  , 2011, 60(2): 020201. doi: 10.7498/aps.60.020201
    [19] 胡昆明. 关于等价电子组态波函数与Young盘间变换性质的讨论.  , 2005, 54(10): 4524-4525. doi: 10.7498/aps.54.4524
    [20] 张海涛, 巩马理, 王东生, 李 伟, 赵达尊. 群论在光子带隙计算中的应用.  , 2004, 53(7): 2060-2064. doi: 10.7498/aps.53.2060
计量
  • 文章访问数:  6840
  • PDF下载量:  213
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-04
  • 修回日期:  2015-12-07
  • 刊出日期:  2016-03-05

/

返回文章
返回
Baidu
map