搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高浓度纤维增强材料介电特性计算方法

廖意 蔡昆 张元 王晓冰

引用本文:
Citation:

高浓度纤维增强材料介电特性计算方法

廖意, 蔡昆, 张元, 王晓冰

An approach to characterize dielectric properties of fiber-reinforced composites with high volume fraction

Liao Yi, Cai Kun, Zhang Yuan, Wang Xiao-Bing
PDF
导出引用
  • 针对复合材料的微观结构非均匀和各向异性特点带来的数值方法计算慢、内存消耗大的问题, 利用均匀化方法计算纤维增强复合材料的等效电磁参数. 采用了纤维低体积添加比至高体积添加比的迭代方法, 同时提出了一个描述材料微观结构的修正的特征长度, 将现有的均匀化方法推广至非准静态(微波频段)条件下高纤维浓度情况. 提出的修正的均匀化模型可直接用于反射系数、屏蔽效能等计算, 其屏蔽效能与实际微观结构复合材料的数值仿真结果进行了对比, 验证了提出的等效电磁参数计算公式的有效性和频率适用范围.
    Fiber-reinforced composite materials are widely used in aeronautics and automotive industries due to their excellent mechanical properties. Composites with high conductive fibers embedded have good performance of shielding effectiveness and become possible candidates to replace metals. One approach for analyzing the electromagnetic (EM) interaction of fiber-reinforced composites is to use full numerical methods, which allow precise modeling and give accurate results. However, numerical methods may lead to prohibitive computational time and memory capacity due to the strong dependence on the shielding properties from heterogeneous microstructures.In composite materials, two important parameters, effective permittivity eff and effective permeability eff, determine the interaction between the electromagnetic field and the materials. For estimating the effective parameters, homogenization techniques have been developed to describe a composite mixture in terms of a spatially homogeneous electromagnetic response, mostly under static conditions. The well-known rules are the Maxwell-Garnett (MG) formula and the Bruggeman formula.These rules are usually applied to the dilute composite materials and provide satisfactory results as long as the wavelength remains large compared to the size of the heterogeneities. Recently, revised homogenization models have been developed to extend the frequency range. Some of them are presented with the help of numerical method but still require substantial computational time and resources to be performed. One recently proposed homogenization model, called dynamic homogenization model (DHM), is an extension of quasi-static homogenization methods for microwave frequencies. It is obtained by introducing a microstructure-dependent characteristic length for the composites made of a square array of circular cylinders buried in the matrix, based on the basic inclusion problems. The DHM overcomes the limitations of standard static homogenization tools, but only applicable to low fiber volume fraction (less than 20%).In this paper, we focus on the microstructure in the case of a square array of circular 2D conductive long fibers embedded in a dielectric matrix. A revised DHM is proposed to describe the effective permittivity of the composite materials with different inclusion concentrations, including higher fiber volume fraction. Firstly, an iterative procedure is employed to estimate an effective permittivity, which is then used to modify the wavelength in the DHM. Secondly, an empirical formula-based characteristic size of the microstructure is presented by considering the current distribution of the fibers under the EM wave illumination in the case of high fiber volume fractions. Therefore, the final modified homogenization model is given for the effective permittivity of composites with arbitrary inclusion concentrations. It can be used to efficiently calculate the reflection and transmission coefficients, as well as the shielding effectiveness by classical transmission-line methods. Three infinite sheets with different physical parameters are utilized for validation. We compare the results of the shielding effectiveness obtained from this homogenization model with those obtained from a full numerical solution of the actual fiber composites. Reasonable agreements obtained demonstrate that the proposed model could define the effective permittivity of the composites with high fiber concentration over a wide frequency range including microwave frequencies. Analogous formulas also hold for the magnetic permeability with permittivity replaced by permeability wherever it appears in the proposed model.
      通信作者: 廖意, lycle21@buaa.edu.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 61302036)、上海市优秀学科带头人计划(B类)(批准号: 14XD1423100)和上海市自然科学基金(批准号: 14ZR1439400)资助的课题.
      Corresponding author: Liao Yi, lycle21@buaa.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61302036), the Program of Shanghai Subject Chief Scientist (B type) (Grant No. 14XD1423100), and the Natural Science Foundation of Shanghai, China (Grant No. 14ZR1439400).
    [1]

    Liang J J, Huang Y, Zhang F, Li N, Ma Y F, Li F F, Chen Y S 2014 Chin. Phys. B 23 088802

    [2]

    Cordill B D, Seguin S A, Ewing M S 2013 IEEE Trans. Instrum. Meas. 62 743

    [3]

    He H H, Wu M Z, Zhao Z S 1999 Acta Phys. Sin. 48 138 (in Chinese) [何华辉, 吴明忠, 赵振声 1999 48 138]

    [4]

    Holloway C L, Sarto M S, Johansson M 2005 IEEE Trans. Electromagn. Compat. 47 833

    [5]

    Zang Y Z, He M X, Gu J Q, Tian Z, Han J G 2012 Chin. Phys. B 21 117802

    [6]

    Waki H, Igarashi H, Honma T 2005 IEEE Trans. Magn. 41 1520

    [7]

    He Y F, Gong R Z, Wang X, Zhao Q 2008 Acta Phys. Sin. 57 5261 (in Chinese) [何燕飞, 龚荣洲, 王鲜, 赵强 2008 57 5261]

    [8]

    Ding S J, Ge D B, Shen N 2010 Acta Phys. Sin. 59 944 (in Chinese) [丁世敬, 葛德彪, 申宁 2010 59 944]

    [9]

    Preault V, Corcolle R, Daniel L, Pichon L 2013 IEEE Trans. Electromagn. Compat. 55 1178

    [10]

    Wasselynck G, Trichet D, Ramdane B, Fouldagar J 2010 IEEE Trans. Magn. 46 3277

    [11]

    Shen X Q, Liu H B, Wang Z, Qian X Y, Jing M X, Yang X C 2014 Chin. Phys. B 23 078101

  • [1]

    Liang J J, Huang Y, Zhang F, Li N, Ma Y F, Li F F, Chen Y S 2014 Chin. Phys. B 23 088802

    [2]

    Cordill B D, Seguin S A, Ewing M S 2013 IEEE Trans. Instrum. Meas. 62 743

    [3]

    He H H, Wu M Z, Zhao Z S 1999 Acta Phys. Sin. 48 138 (in Chinese) [何华辉, 吴明忠, 赵振声 1999 48 138]

    [4]

    Holloway C L, Sarto M S, Johansson M 2005 IEEE Trans. Electromagn. Compat. 47 833

    [5]

    Zang Y Z, He M X, Gu J Q, Tian Z, Han J G 2012 Chin. Phys. B 21 117802

    [6]

    Waki H, Igarashi H, Honma T 2005 IEEE Trans. Magn. 41 1520

    [7]

    He Y F, Gong R Z, Wang X, Zhao Q 2008 Acta Phys. Sin. 57 5261 (in Chinese) [何燕飞, 龚荣洲, 王鲜, 赵强 2008 57 5261]

    [8]

    Ding S J, Ge D B, Shen N 2010 Acta Phys. Sin. 59 944 (in Chinese) [丁世敬, 葛德彪, 申宁 2010 59 944]

    [9]

    Preault V, Corcolle R, Daniel L, Pichon L 2013 IEEE Trans. Electromagn. Compat. 55 1178

    [10]

    Wasselynck G, Trichet D, Ramdane B, Fouldagar J 2010 IEEE Trans. Magn. 46 3277

    [11]

    Shen X Q, Liu H B, Wang Z, Qian X Y, Jing M X, Yang X C 2014 Chin. Phys. B 23 078101

  • [1] 覃维, 安书悦, 陈帅, 龚荣洲, 王鲜. 基于迭代反演的非磁性材料复介电常数测量及初值选取方法.  , 2023, 72(7): 070601. doi: 10.7498/aps.72.20222224
    [2] 张海燕, 宋佳昕, 任燕, 朱琦, 马雪芬. 碳纤维增强复合材料褶皱缺陷的超声成像.  , 2021, 70(11): 114301. doi: 10.7498/aps.70.20210032
    [3] 万婷, 罗朝明, 闵力, 陈敏, 肖磊. 基于合金介电常数的可控特性增强光子自旋霍尔效应.  , 2018, 67(6): 064201. doi: 10.7498/aps.67.20171824
    [4] 徐小虎, 陈永强, 郭志伟, 孙勇, 苗向阳. 等效零折射率材料微腔中均匀化腔场作用下的简正模劈裂现象.  , 2018, 67(2): 024210. doi: 10.7498/aps.67.20171880
    [5] 郝建红, 公延飞, 范杰清, 蒋璐行. 一种内置条状金属板的双层金属腔体屏蔽效能的理论模型.  , 2016, 65(4): 044101. doi: 10.7498/aps.65.044101
    [6] 阚勇, 闫丽萍, 赵翔, 周海京, 刘强, 黄卡玛. 基于电磁拓扑的多腔体屏蔽效能快速算法.  , 2016, 65(3): 030702. doi: 10.7498/aps.65.030702
    [7] 罗静雯, 杜平安, 任丹, 聂宝林. 一种基于BLT方程的孔缝箱体屏蔽效能计算方法.  , 2015, 64(1): 010701. doi: 10.7498/aps.64.010701
    [8] 张亚普, 达新宇, 祝杨坤, 赵蒙. 电大开孔箱体屏蔽效能分析解析模型.  , 2014, 63(23): 234101. doi: 10.7498/aps.63.234101
    [9] 范杰清, 郝建红, 柒培华. 内部窗口结构对开孔矩形腔体近场屏蔽效能的影响.  , 2014, 63(1): 014104. doi: 10.7498/aps.63.014104
    [10] 戴龙泽, 刘希琴, 刘子利, 丁丁. 乏燃料贮运用铝基碳化硼复合材料的屏蔽性能计算.  , 2013, 62(22): 222401. doi: 10.7498/aps.62.222401
    [11] 焦重庆, 牛帅. 开孔矩形腔体的近场电磁屏蔽效能研究.  , 2013, 62(11): 114102. doi: 10.7498/aps.62.114102
    [12] 牛帅, 焦重庆, 李琳. 中等导电性材料覆盖的金属腔体的电磁屏蔽效能研究.  , 2013, 62(21): 214102. doi: 10.7498/aps.62.214102
    [13] 杨一鸣, 王甲富, 屈绍波, 柏鹏, 李哲, 夏颂, 王军, 徐卓. 基于高介电常数基板和金属结构负折射材料的设计,仿真与验证.  , 2011, 60(5): 054103. doi: 10.7498/aps.60.054103
    [14] 文玥, 张晓霞, 黄春阳, 沈杰. 基于Wheeler's Conforming Mapping扩展变换法的聚合物电光调制器特性研究.  , 2011, 60(10): 104223. doi: 10.7498/aps.60.104223
    [15] 何燕飞, 龚荣洲, 王 鲜, 赵 强. 蜂窝结构吸波材料等效电磁参数和吸波特性研究.  , 2008, 57(8): 5261-5266. doi: 10.7498/aps.57.5261
    [16] 刘亚红, 罗春荣, 赵晓鹏. 同时实现介电常数和磁导率为负的H型结构单元左手材料.  , 2007, 56(10): 5883-5889. doi: 10.7498/aps.56.5883
    [17] 董丽娟, 江海涛, 杨成全, 石云龙. 负介电常数材料与负磁导率材料双层结构的透射特性.  , 2007, 56(8): 4657-4660. doi: 10.7498/aps.56.4657
    [18] 刘顺华, 崔晓冬, 赵彦波. 涂层球体混合体系的等效介电常数计算及应用.  , 2006, 55(11): 5764-5768. doi: 10.7498/aps.55.5764
    [19] 张武, 王燕. 光学非均匀复合材料的多元滞后器模型.  , 1994, 43(8): 1380-1385. doi: 10.7498/aps.43.1380
    [20] 张武, 王燕. 光学非均匀单向纤维复合材料的应力光学行为.  , 1994, 43(7): 1192-1202. doi: 10.7498/aps.43.1192
计量
  • 文章访问数:  6193
  • PDF下载量:  185
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-10
  • 修回日期:  2015-09-18
  • 刊出日期:  2016-01-20

/

返回文章
返回
Baidu
map