-
对科学级电荷耦合器件(charge-coupled device, CCD)进行了质子和中子辐照试验及退火试验, 应用蒙特卡洛方法计算了质子和中子在CCD中的能量沉积, 分析了器件的辐射损伤机理. 仿真计算了N+埋层内沉积的位移损伤剂量, 辐照与退火试验过程中主要考察暗信号的变化规律. 研究结果显示, 质子与中子辐照均会引发暗信号退化, 其退化的规律与位移损伤剂量变化一致; 退火后, 质子辐照所致CCD暗信号大幅度恢复, 其体暗信号增加量占总暗信号增加量的比例最多为22%; 中子辐照引发的暗信号增长主要为体暗信号. 质子和中子在N+埋层产生相同位移损伤剂量的情况下, 两者导致的体暗信号增长量相同, 质子与中子辐照产生的体缺陷对体暗信号增长的贡献是同质的.The proton and neutron irradiation and annealing experiments are carried out on a domestic buried channel CCD (charge-coupled devices), Monte Carlo method being applied to calculate the energy deposition of scientific CCD irradiated by proton and neutron, and the radiation damage mechanism of the device is analyzed. The displacement damage dose in N+ buried channel is simulated. During irradiation and annealing experiments, the main parameter (dark signal) is investigated. Results show that the dark signal of the buried channel CCD irradiated by 10 MeV proton and 1 MeV neutron rises obviously. With the same fluence, the increase of dark signal and the displacement damage dose in N+ buried channel caused by 10 MeV proton is larger than that by 1 MeV neutron. Dark signal caused by proton irradiation is divided into surface dark signal and bulk dark signal. Oxide-trapped-charges and interface states may be caused by ionization-generated surface dark signal, and the bulk defects may be caused by displacement-generated bulk dark signal. Neutron irradiation only affects the bulk dark signal. Defects and their annealing temperature are studied. The dark signal of CCD irradiated by proton is greatly reduced after annealing, this phenomenon means that the dark signal is mainly affected by ionization. The proportion of bulk dark signals in total dark signals can be calculated by the remainder of dark signal after annealing, and it is at most about 20% or less. From the formula, the position of energy level of bulk defects has an obvious influence on the bulk dark signal. The energy level in the middle of the forbidden band can provide effective hot carriers. Combining the results of experiment and simulation, when the displacement damage doses in N+ buried channel are the same, the bulk dark signal produced by proton is nearly the same as that produced by neutron. This phenomenon means that the defect levels in the forbidden band gap caused by proton and neutron irradiation have the same contributions to dark signal generation. Effect of proton and neutron irradiation on the bulk dark signal is homogeneous. The displacement damage dose can be used to characterize the degradation degree of the bulk dark signal in CCD after irradiation.
[1] Bebek C, Groom D, Holland S, Karcher A, Kolbe W, Lee J, Levi M, Palaio N, Turko B, Uslenghi M, Wagner A, Wang G 2002 IEEE Trans. on Nucl. Sci. 49 1221
[2] Chugg A M, Jones R, Moutrie M J, Truscott P R 2004 IEEE Trans. on Nucl. Sci. 51 3579
[3] Pickel J C, Kalma A H, Hopkinson G R, Marshall C J 2003 IEEE Trans. Nucl. Sci. 50 671
[4] Hopkinson G R 1994 Radiation Physics and Chemistry 43 79
[5] Jaanimagi P A, Boni R, Keck R L 2001 Review of Scientific Instruments 72 800
[6] Stefanov K D, Tsukamoto T, Miyamoto A, Sugimoto Y, Tamura N, Abe K, Nagaminc T, Aso T 2000 IEEE Trans. on Nucl. Sci. 47 1280
[7] Hopkinson G R, Mohammadzadeh A 2004 International Journal of High Speed Electronics and Systems 14 135
[8] Wen L, Li Y D, Guo Q, Ren D Y, Wang B, Ma L Y 2015 Acta Phys. Sin. 64 024220(in Chinese) [文林, 李豫东, 郭旗, 任迪远, 汪波, 玛丽娅 2015 64 024220]
[9] Wang Z J, Tang B Q, Xiao Z G, Liu M B, Huang S Y, Zhang Y 2010 Acta Phys. Sin 59 4136(in Chinese) [王祖军, 唐本奇, 肖志刚, 刘敏波, 黄绍艳, 张勇 2010 59 4136]
[10] Xiao Z G, Tang B Q, Li J L, Zhang Y, Liu M B, Zhang Y, Wang Z J, Huang S Y 2007 Nuclear Electronics 27 724 (in Chinese) [肖志刚, 唐本奇, 李君利, 张勇, 刘敏波, 张勇, 王祖军, 黄绍艳 2007 核电子学与探测技术 27 724]
[11] Lei F, Truscott P R, Dyer C S, Quaghebeur B, Heynderickx D, Nieminen P, Evans H, Daly E 2002 IEEE Trans. on Nucl. Sci. 49 2788
[12] Benton J L, Kimerling L C 1982 Journal of the Electrochemical Society 129 2098
[13] Timothy D. Hardy 1994 MS Dissertation(Columbia: Simon Fraser University)
[14] Saigne F, Schrimpf R. D, Fleetwood D M, Cizmarik R, Zander D 2004 IEEE Trans, on Nucl. Sci. 44 1989
[15] Schrimpf R D, Fleetwood D M, Galloway K F, Lacoe R C, Mayer D C, Puhl J M, Pease R L, Suehle J S 2004 IEEE Trans, on Nucl. Sci. 51 2903
[16] Boesch H E 1988 IEEE Trans. on Nucl. Sci. 35 1160
[17] Kono K, Sandland J G, Wada K, Kimerling L C 2000 X-Ray and Gamma-Ray Instrumentation for Astronomy 4140 267
[18] Timothy Hardy D 1997 M. S. Dissertation(Canada: Simon Fraser University)
[19] Kenneth Wang K, Aldert, Eugene Chenette R 1975 IEEE Transactions on Electron Devices 22 591
-
[1] Bebek C, Groom D, Holland S, Karcher A, Kolbe W, Lee J, Levi M, Palaio N, Turko B, Uslenghi M, Wagner A, Wang G 2002 IEEE Trans. on Nucl. Sci. 49 1221
[2] Chugg A M, Jones R, Moutrie M J, Truscott P R 2004 IEEE Trans. on Nucl. Sci. 51 3579
[3] Pickel J C, Kalma A H, Hopkinson G R, Marshall C J 2003 IEEE Trans. Nucl. Sci. 50 671
[4] Hopkinson G R 1994 Radiation Physics and Chemistry 43 79
[5] Jaanimagi P A, Boni R, Keck R L 2001 Review of Scientific Instruments 72 800
[6] Stefanov K D, Tsukamoto T, Miyamoto A, Sugimoto Y, Tamura N, Abe K, Nagaminc T, Aso T 2000 IEEE Trans. on Nucl. Sci. 47 1280
[7] Hopkinson G R, Mohammadzadeh A 2004 International Journal of High Speed Electronics and Systems 14 135
[8] Wen L, Li Y D, Guo Q, Ren D Y, Wang B, Ma L Y 2015 Acta Phys. Sin. 64 024220(in Chinese) [文林, 李豫东, 郭旗, 任迪远, 汪波, 玛丽娅 2015 64 024220]
[9] Wang Z J, Tang B Q, Xiao Z G, Liu M B, Huang S Y, Zhang Y 2010 Acta Phys. Sin 59 4136(in Chinese) [王祖军, 唐本奇, 肖志刚, 刘敏波, 黄绍艳, 张勇 2010 59 4136]
[10] Xiao Z G, Tang B Q, Li J L, Zhang Y, Liu M B, Zhang Y, Wang Z J, Huang S Y 2007 Nuclear Electronics 27 724 (in Chinese) [肖志刚, 唐本奇, 李君利, 张勇, 刘敏波, 张勇, 王祖军, 黄绍艳 2007 核电子学与探测技术 27 724]
[11] Lei F, Truscott P R, Dyer C S, Quaghebeur B, Heynderickx D, Nieminen P, Evans H, Daly E 2002 IEEE Trans. on Nucl. Sci. 49 2788
[12] Benton J L, Kimerling L C 1982 Journal of the Electrochemical Society 129 2098
[13] Timothy D. Hardy 1994 MS Dissertation(Columbia: Simon Fraser University)
[14] Saigne F, Schrimpf R. D, Fleetwood D M, Cizmarik R, Zander D 2004 IEEE Trans, on Nucl. Sci. 44 1989
[15] Schrimpf R D, Fleetwood D M, Galloway K F, Lacoe R C, Mayer D C, Puhl J M, Pease R L, Suehle J S 2004 IEEE Trans, on Nucl. Sci. 51 2903
[16] Boesch H E 1988 IEEE Trans. on Nucl. Sci. 35 1160
[17] Kono K, Sandland J G, Wada K, Kimerling L C 2000 X-Ray and Gamma-Ray Instrumentation for Astronomy 4140 267
[18] Timothy Hardy D 1997 M. S. Dissertation(Canada: Simon Fraser University)
[19] Kenneth Wang K, Aldert, Eugene Chenette R 1975 IEEE Transactions on Electron Devices 22 591
计量
- 文章访问数: 6474
- PDF下载量: 160
- 被引次数: 0