搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电力线谐波辐射在分层各向异性电离层中的传播特点

吴静 周志为 闫旭

引用本文:
Citation:

电力线谐波辐射在分层各向异性电离层中的传播特点

吴静, 周志为, 闫旭

Propagation characteristics of power line harmonic radiation into the stratified anisotropic ionosphere

Wu Jing, Zhou Zhi-Wei, Yan Xu
PDF
导出引用
  • 电力线谐波辐射特指在电离层或磁层中观测到的来源于地面电力系统输电线的电磁波辐射, 其在电磁场时频功率谱中表现为400 Hz至5 kHz范围内, 频率间隔为50/100 Hz或60/120 Hz 的平行谱线, 已成为近地空间环境的一种人为污染源. 对于该现象的形成机理尚缺乏定量研究. 本文研究了非理想导电大地上方由电偶极子源产生的电磁场在分层各向异性电离层中的传播模型, 提出了一种新的求解方法, 有效解决了编程计算中的数值溢出问题, 并利用已有解析解对所提方法进行了验证. 在此基础上, 利用实际电力线、大地、电离层的相关参数, 研究了偶极子源频率、电离层下边界高度、大地电导率、地磁场方向等对电力线谐波辐射在电离层中的传播的影响. 结果表明, 频率等于地-电离层波导导波模截止频率时透入电离层的电力线谐波辐射强度更大; 谐波电流一定时, 大地电导率小的地区, 电力线谐波辐射的功率更大; 电力线谐波辐射在电离层中沿地磁场方向传播. 本文所得结果有益于阐释电力线谐波辐射现象的形成机理.
    Power line harmonic radiation (PLHR), which specifically refers to the electromagnetic wave radiation observed in ionosphere or magnetosphere, is radiated by the transmission lines of power systems on the ground. PLHR is shown as a parallel spectrogram between 400 Hz and 5 kHz in frequency-time power spectrogram of electromagnetic field. And the frequency spacing of the parallel spectrogram is 50/100 Hz or 60/120 Hz. As an artificial pollution source in the near earth space, PLHR has attracted more and more attention. However, so far, there have been little proposed quantitative researches on the formation mechanism. This paper studies the propagation model for the electromagnetic waves generated by the electric dipole source above the non-ideal conductive ground in the stratified anisotropic ionosphere. Based on the method by Lehtinen(2008), a new full-wave finite element method is give to solve the problem. By recursively calculating reflection coefficients and mode amplitudes, the method contains no index increasing items. So it can effectively overcome the numerical overflow in programming calculations. In order to verify the correctness of the method, comparison are made between the existing analytical solutions and the solutions obtained from the proposed method, and they are in excellent agreement. Further more, using the present model, the new method and the associated parameters about practical power lines, ground and ionosphere, we have studied the effects of the frequency of dipole source, the bottom boundary height of ionosphere, the earth conductivity, and the geomagnetic field direction on PLHR propagation in the ionosphere. Results show that when the frequency of radiation source equals the cut off frequency of earth-ionosphere waveguide-guided wave modes, the strength of PLHR for penetrating into the ionosphere becomes larger. Keeping the harmonic current constant, a smaller ground conductivity would be accompanied by a larger power of PLHR. PLHR propagates along the direction of the geomagnetic field in the ionosphere. Therefore, it is much easier for a high-order harmonic radiation of transmission lines to penetrate into the ionosphere along the direction of the geomagnetic field in the areas with low ground conductivity under a certain condition. Results obtained in this paper may have important implications to explain the formation mechanism of PLHR.
      通信作者: 吴静, wujing06@buaa.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51207006)资助的课题.
      Corresponding author: Wu Jing, wujing06@buaa.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51207006).
    [1]

    Bullough K 1995 Handbook of atmospheric electrodynamics (Vol. 2) (Boca Raton: Fla CRC Press) p291

    [2]

    Simoes F, Pfaff R, Berthelier J J, Klenzing J 2012 Space. Sci. Rev. 168 551

    [3]

    Parrot M, Němec F, Santolk O, Berthelier J J 2005 Ann. Geophys. 23 3301

    [4]

    Němec F, Santolk O, Parrot M, Berthelier J J 2007 Adv. Space. Res. 40 398

    [5]

    Němec F, Santolk O, Parrot M, Berthelier J J 2007 Adv. Space. Res. 40 398

    [6]

    Němec F, Santolk O, Parrot M, Bortnik J 2010 J. Geophys. Res. 115 A11301

    [7]

    Němec F, Parrot M, Santolk O 2010 J. Geophys. Res. 115 A11301

    [8]

    Parrot M, Němec F, Santolk O 2014 Sci. Journal of Beijing University of Aeronautics and Astronautics 40 1672(in Chinese) [吴静, 张翀, 付静静, 马齐爽 2014 北京航空航天大学学报 40 1672]

    [9]

    Wu J, Zhang C, Fu J J, Ma Q S 2014 Sci. Journal of Beijing University of Aeronautics and Astronautics 40 1672 (in Chinese) [吴静, 张翀, 付静静, 马齐爽2014 北京航空航天大学学报40 1672]

    [10]

    Carson J R 1926 Bell Syst. Technol. J. 5 539

    [11]

    Wedepohl L M, Efthymiadis A E 1983 J. Atmos. Terr. Phys. 45 409

    [12]

    Yearby K H, Smith A J, Bullough K 1983 J. Atmos. Terr. Phys. 45 409

    [13]

    Tatnall A R L, Matthews J P, Bullouth K, Kaiser T R 2008 Chin. Phys. B 17 3629

    [14]

    Ni G Y, Yan L, Yuan N C 2008 Chin. Phys. B 17 3629

    [15]

    Ando Y, Hayakawa M, Molchanov O A 2014 Chin. Phys. B 23 034102

    [16]

    Wu J, Fu J J, Zhang C 2014 Chin. Phys. B 23 034102

    [17]

    Budden K G 1985 The Propagation of Radio Waves:The Theory of Radio Waves of Low Power in the Ionosphere and Magnetosphere (Cambridge: Cambridge Univ. Press) pp574-576

    [18]

    Nagano I, Mambo M, Hutatsuishi G 1975 Radio. Sci. 10 611

    [19]

    Xia M Y, Chen Z Y 1999 Sci. China Ser. E 29 163 (in Chinese) [夏明耀, 陈志雨 1999 中国科学(E辑) 29 163]

    [20]

    Lehtinen N G, Inan U S 2008 J. Geophys. Res. 113 A06301

    [21]

    Nabighian M N (translated by Zhao J X, Wang Y J) 1992 Electromagnetic Methods in Applied Geophysics (Vol. 1) (Beijing: Geological Publishing House) pp217-226 (in Chinese) [米萨克 N 纳比吉安著 (赵经祥, 王艳君译) 1992 勘查地球物理电磁法(第一卷)(北京: 地质出版社)第217226页]

    [22]

    Fu C M, Di Q Y, Wang M Y 2010 Sci. Chinese J. Geophys-Ch. 53 177(in Chinese) [付长民, 底青云, 王妙月 2010 地球 53 177]

  • [1]

    Bullough K 1995 Handbook of atmospheric electrodynamics (Vol. 2) (Boca Raton: Fla CRC Press) p291

    [2]

    Simoes F, Pfaff R, Berthelier J J, Klenzing J 2012 Space. Sci. Rev. 168 551

    [3]

    Parrot M, Němec F, Santolk O, Berthelier J J 2005 Ann. Geophys. 23 3301

    [4]

    Němec F, Santolk O, Parrot M, Berthelier J J 2007 Adv. Space. Res. 40 398

    [5]

    Němec F, Santolk O, Parrot M, Berthelier J J 2007 Adv. Space. Res. 40 398

    [6]

    Němec F, Santolk O, Parrot M, Bortnik J 2010 J. Geophys. Res. 115 A11301

    [7]

    Němec F, Parrot M, Santolk O 2010 J. Geophys. Res. 115 A11301

    [8]

    Parrot M, Němec F, Santolk O 2014 Sci. Journal of Beijing University of Aeronautics and Astronautics 40 1672(in Chinese) [吴静, 张翀, 付静静, 马齐爽 2014 北京航空航天大学学报 40 1672]

    [9]

    Wu J, Zhang C, Fu J J, Ma Q S 2014 Sci. Journal of Beijing University of Aeronautics and Astronautics 40 1672 (in Chinese) [吴静, 张翀, 付静静, 马齐爽2014 北京航空航天大学学报40 1672]

    [10]

    Carson J R 1926 Bell Syst. Technol. J. 5 539

    [11]

    Wedepohl L M, Efthymiadis A E 1983 J. Atmos. Terr. Phys. 45 409

    [12]

    Yearby K H, Smith A J, Bullough K 1983 J. Atmos. Terr. Phys. 45 409

    [13]

    Tatnall A R L, Matthews J P, Bullouth K, Kaiser T R 2008 Chin. Phys. B 17 3629

    [14]

    Ni G Y, Yan L, Yuan N C 2008 Chin. Phys. B 17 3629

    [15]

    Ando Y, Hayakawa M, Molchanov O A 2014 Chin. Phys. B 23 034102

    [16]

    Wu J, Fu J J, Zhang C 2014 Chin. Phys. B 23 034102

    [17]

    Budden K G 1985 The Propagation of Radio Waves:The Theory of Radio Waves of Low Power in the Ionosphere and Magnetosphere (Cambridge: Cambridge Univ. Press) pp574-576

    [18]

    Nagano I, Mambo M, Hutatsuishi G 1975 Radio. Sci. 10 611

    [19]

    Xia M Y, Chen Z Y 1999 Sci. China Ser. E 29 163 (in Chinese) [夏明耀, 陈志雨 1999 中国科学(E辑) 29 163]

    [20]

    Lehtinen N G, Inan U S 2008 J. Geophys. Res. 113 A06301

    [21]

    Nabighian M N (translated by Zhao J X, Wang Y J) 1992 Electromagnetic Methods in Applied Geophysics (Vol. 1) (Beijing: Geological Publishing House) pp217-226 (in Chinese) [米萨克 N 纳比吉安著 (赵经祥, 王艳君译) 1992 勘查地球物理电磁法(第一卷)(北京: 地质出版社)第217226页]

    [22]

    Fu C M, Di Q Y, Wang M Y 2010 Sci. Chinese J. Geophys-Ch. 53 177(in Chinese) [付长民, 底青云, 王妙月 2010 地球 53 177]

  • [1] 罗欢, 肖卉. 电离层回波谱展宽机理分析及频谱锐化方法.  , 2019, 68(21): 219401. doi: 10.7498/aps.68.20190887
    [2] 赵海生, 徐朝辉, 高敬帆, 许正文, 吴健, 冯杰, 徐彬, 薛昆, 李辉, 马征征. 电离层中性气体释放的早期试验效应研究.  , 2018, 67(1): 019401. doi: 10.7498/aps.67.20171620
    [3] 杨巨涛, 李清亮, 王建国, 郝书吉, 潘威炎. 双频双波束加热电离层激发甚低频/极低频辐射理论分析.  , 2017, 66(1): 019401. doi: 10.7498/aps.66.019401
    [4] 于靖, 卜雄洙, 牛杰, 王新征. 利用地球红外辐射的旋转飞行体姿态估计方法.  , 2016, 65(7): 079501. doi: 10.7498/aps.65.079501
    [5] 赵海生, 许正文, 吴振森, 冯杰, 吴健, 徐彬, 徐彤, 胡艳莉. 电离层中释放六氟化硫效应的三维精细模拟研究.  , 2016, 65(20): 209401. doi: 10.7498/aps.65.209401
    [6] 陈桂波, 毕娟, 张烨, 李宗文. 各向异性介质三维电磁响应模拟的Ho-GEBA算法.  , 2013, 62(9): 094101. doi: 10.7498/aps.62.094101
    [7] 李琼, 翟永惠, 梁果, 郭旗. 各向异性介质中的椭圆空间光孤子特性.  , 2013, 62(2): 024202. doi: 10.7498/aps.62.024202
    [8] 郝书吉, 李清亮, 杨巨涛, 吴振森. 电离层调制加热产生极低频/甚低频波定向辐射的理论分析.  , 2013, 62(22): 229402. doi: 10.7498/aps.62.229402
    [9] 霍光谱, 胡祥云, 方慧, 黄一凡. 层状各向异性介质大地电磁联合反演研究.  , 2012, 61(12): 129101. doi: 10.7498/aps.61.129101
    [10] 洪清泉, 仲伟博, 余燕忠, 蔡植善, 陈木生, 林顺达. 电偶极子在磁各向异性介质中的辐射功率.  , 2012, 61(16): 160302. doi: 10.7498/aps.61.160302
    [11] 洪振杰, 刘荣建, 郭鹏, 董乃铭. 非球对称电离层掩星数据反演.  , 2011, 60(12): 129401. doi: 10.7498/aps.60.129401
    [12] 李建龙, 唐世红, 朱世富, 傅克祥. 各向异性介质浮雕光栅体内光波场的传输.  , 2010, 59(8): 5467-5473. doi: 10.7498/aps.59.5467
    [13] 洪清泉, 余燕忠, 蔡植善, 陈木生, 林顺达. 磁偶极和电四极在磁各向异性介质中的辐射功率.  , 2010, 59(8): 5235-5240. doi: 10.7498/aps.59.5235
    [14] 林宝勤, 徐利军, 袁乃昌. 以各向异性介质为衬底的共面紧凑型光子带隙结构.  , 2005, 54(8): 3711-3715. doi: 10.7498/aps.54.3711
    [15] 杜启振, 杨慧珠. 线性黏弹性各向异性介质速度频散和衰减特征研究.  , 2002, 51(9): 2101-2108. doi: 10.7498/aps.51.2101
    [16] 李国旺, 黄吝根, 杨顺华. 自由表面附近运动的位错——各向异性介质情况.  , 1992, 41(1): 69-79. doi: 10.7498/aps.41.69
    [17] 潘威炎. 关于地球曲率对低频电波电离层反射系数计算的影响.  , 1981, 30(5): 661-670. doi: 10.7498/aps.30.661
    [18] 吕景发. 关于在各向异性介质中的契连科夫辐射.  , 1965, 21(5): 1083-1088. doi: 10.7498/aps.21.1083
    [19] 吕景发. 各向异性介质中契连科夫辐射的量子理论.  , 1965, 21(5): 1049-1060. doi: 10.7498/aps.21.1049
    [20] 陈茂康, 张煦. 研究中国天空电离层之初草报告.  , 1935, 1(3): 92-100. doi: 10.7498/aps.1.92
计量
  • 文章访问数:  6138
  • PDF下载量:  160
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-27
  • 修回日期:  2015-05-14
  • 刊出日期:  2015-10-05

/

返回文章
返回
Baidu
map