搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于指导滤波的图像盲复原算法

李鑫楠 黄贺艳 贾小宁 马驷良

引用本文:
Citation:

基于指导滤波的图像盲复原算法

李鑫楠, 黄贺艳, 贾小宁, 马驷良

Guided filter-based blind image restoration method

Li Xin-Nan, Huang He-Yan, Jia Xiao-Ning, Ma Si-Liang
PDF
导出引用
  • 作为图像处理领域的重要分支和研究热点之一, 图像复原方法 的研究始终具有重要理论意义和广泛的应用价值, 图像盲复原一直以来都 是图像复原中比较困难的问题之一. 针对相机与所拍摄景物之间由于相对 位置移动而使所获得图像发生运动模糊的情况, 本文提出了一种基于指导滤波 的图像盲复原算法. 我们首先通过频域迭代算法对点扩散函数 进行估计. 然后, 由于指导滤波具有较好的保持图像边缘的特性, 我们应用基于指导滤波的图像非盲复原算法恢复目标图像. 对以上两步进行反复迭代, 直到获得最终的清晰图像. 为了验证本文所提算法的有效性, 给出了多组对比实验. 实验结果表明, 本文所提算法能够在有效地抑制噪声和振铃 效应的同时, 还能够更好的保持图像的边缘和纹理细节. 因此, 本文算法可以获得更高质量的复原图像.
    As a major branch and research focus in the image processing field, the study on image restoration is always of practical significance and application value. Blind image restoration has always been one of the most difficult problems in image restoration. In view of the image motion blurring induced by the relative motion between the camera and the subject, we present a blind image restoration method based on guided filter. We first estimate the point spread function by using the iteration algorithm in the frequency domain. And then, because the guided filter has the edge-preserving smoothing property, we restore the target image by the non-blind image restoration algorithm based on the guided filter. By iterating the above two steps, we can obtain the original clear image. In order to verify the effectiveness of the proposed algorithm, we give several groups of experiments. Experimental results show that the proposed algorithm can not only effectively eliminate the noise and suppress the ringing, but also well preserve the edge and texture details. Therefore, the proposed algorithm can restore the image with high quality.
    [1]

    Bishop T E, Babacan S D, Amizic B, Chan T, Molina R, Katsaggelos A K 2007 Blind image deconvolution: theory and applications. CRC Press

    [2]

    Jin Z L, Han J, Zhang Y, Bai L F 2014 Acta Phys. Sin. 63 069501 (in Chinese) [金左轮, 韩静, 张毅, 柏连发 2014 63 069501]

    [3]

    Shi M Z, Xu T F, Zhang K 2011 Opt. Precision Eng. 19 1973 (in Chinese) [石明珠, 许廷发, 张坤 2011 光学精密工程 19 1973]

    [4]

    Li F 2012 Acta Phys. Sin. 61 230203 (in Chinese) [李斐 2012 61 230203]

    [5]

    Zhao L, Jin W Q, Chen Y N, Su B H 2008 Acta Opt. Sin. 28 1703 (in Chinese) [赵琳, 金伟其, 陈翼男, 苏秉华 2008 光学学报 28 1703]

    [6]

    Sun H, Li Z Q 2012 Chinese Opt. 5 174 (in Chinese) [孙辉, 李志强 2012 中国光学 5 174]

    [7]

    Shi M Z, Xu T F, Liang J, Li X M 2013 Acta Phys. Sin. 62 174204 (in Chinese) [石明珠, 许廷发, 梁炯, 李相民 2013 62 174204]

    [8]

    Yang J, Yin W, Zhang Y, Wang Y 2013 SIAM J. Imaging Sciences 2 569

    [9]

    Michailovich O V 2011 IEEE Trans. Image Process 20 1281

    [10]

    Huang H Y, Yang H, Ma S L 2013 J. Electronic Imaging 22

    [11]

    Fergus R, Singh B, Hertzmann A, Roweis S T, Freeman W T 2006 ACM Trans. Graphics 25 787

    [12]

    Shan Q, Jia J, Agarwala A 2008 ACM Trans. Graphics 27 73

    [13]

    Levin A, Weiss Y, Durand F 2011 IEEE Trans. Pattern Anal. and Mach. Intell. 33 2354

    [14]

    Yuan L, Sun J, Quan L, Shum H Y 2007 ACM Trans. Graphics 26 1

    [15]

    Xu L, Jia J 2010 In Proc. of the European Conf. on Computer Vision

    [16]

    Babacan S D, Rafael M, Minh X D, Aggelos K K 2012 In Proc. of the European Conf. on Computer Vision 6 341

    [17]

    Zhong L, Cho S, Dimitris M, Sylvain P, Jue W 2013 In Proc. CVPR

    [18]

    He K M, Sun J, Tang X 2010 In Proc. of the European Conf. on Computer Vision 1 1

    [19]

    He K M, Sun J, Tang X 2013 IEEE Trans. Pattern Anal. and Mach. Intell. 35 1397

    [20]

    Zomet A, Peleg S 2002 Proc. IEEE Workshop Applications of Computer Vision

    [21]

    He K M, Sun J, Tang X 2009 Proc. IEEE Conf. Computer Vision and Pattern Recognition

    [22]

    Levin A, Lischinski D, Weiss Y 2006 Proc. IEEE Conf. Computer Vision and Pattern Recognition

    [23]

    Ayers G R, Dainty J C 1998 Optics Letters 13 547

    [24]

    Sunghyun C, Seungyong L 2009 ACM Trans. Graphics(SIGGRAPH ASIA) 28 145

  • [1]

    Bishop T E, Babacan S D, Amizic B, Chan T, Molina R, Katsaggelos A K 2007 Blind image deconvolution: theory and applications. CRC Press

    [2]

    Jin Z L, Han J, Zhang Y, Bai L F 2014 Acta Phys. Sin. 63 069501 (in Chinese) [金左轮, 韩静, 张毅, 柏连发 2014 63 069501]

    [3]

    Shi M Z, Xu T F, Zhang K 2011 Opt. Precision Eng. 19 1973 (in Chinese) [石明珠, 许廷发, 张坤 2011 光学精密工程 19 1973]

    [4]

    Li F 2012 Acta Phys. Sin. 61 230203 (in Chinese) [李斐 2012 61 230203]

    [5]

    Zhao L, Jin W Q, Chen Y N, Su B H 2008 Acta Opt. Sin. 28 1703 (in Chinese) [赵琳, 金伟其, 陈翼男, 苏秉华 2008 光学学报 28 1703]

    [6]

    Sun H, Li Z Q 2012 Chinese Opt. 5 174 (in Chinese) [孙辉, 李志强 2012 中国光学 5 174]

    [7]

    Shi M Z, Xu T F, Liang J, Li X M 2013 Acta Phys. Sin. 62 174204 (in Chinese) [石明珠, 许廷发, 梁炯, 李相民 2013 62 174204]

    [8]

    Yang J, Yin W, Zhang Y, Wang Y 2013 SIAM J. Imaging Sciences 2 569

    [9]

    Michailovich O V 2011 IEEE Trans. Image Process 20 1281

    [10]

    Huang H Y, Yang H, Ma S L 2013 J. Electronic Imaging 22

    [11]

    Fergus R, Singh B, Hertzmann A, Roweis S T, Freeman W T 2006 ACM Trans. Graphics 25 787

    [12]

    Shan Q, Jia J, Agarwala A 2008 ACM Trans. Graphics 27 73

    [13]

    Levin A, Weiss Y, Durand F 2011 IEEE Trans. Pattern Anal. and Mach. Intell. 33 2354

    [14]

    Yuan L, Sun J, Quan L, Shum H Y 2007 ACM Trans. Graphics 26 1

    [15]

    Xu L, Jia J 2010 In Proc. of the European Conf. on Computer Vision

    [16]

    Babacan S D, Rafael M, Minh X D, Aggelos K K 2012 In Proc. of the European Conf. on Computer Vision 6 341

    [17]

    Zhong L, Cho S, Dimitris M, Sylvain P, Jue W 2013 In Proc. CVPR

    [18]

    He K M, Sun J, Tang X 2010 In Proc. of the European Conf. on Computer Vision 1 1

    [19]

    He K M, Sun J, Tang X 2013 IEEE Trans. Pattern Anal. and Mach. Intell. 35 1397

    [20]

    Zomet A, Peleg S 2002 Proc. IEEE Workshop Applications of Computer Vision

    [21]

    He K M, Sun J, Tang X 2009 Proc. IEEE Conf. Computer Vision and Pattern Recognition

    [22]

    Levin A, Lischinski D, Weiss Y 2006 Proc. IEEE Conf. Computer Vision and Pattern Recognition

    [23]

    Ayers G R, Dainty J C 1998 Optics Letters 13 547

    [24]

    Sunghyun C, Seungyong L 2009 ACM Trans. Graphics(SIGGRAPH ASIA) 28 145

  • [1] 赵伟瑞, 王浩, 张璐, 赵跃进, 褚春艳. 基于卷积神经网络的高精度分块镜共相检测方法.  , 2022, 71(16): 164202. doi: 10.7498/aps.71.20220434
    [2] 李四维, 林丹樱, 邹小慧, 张炜, 陈丹妮, 于斌, 屈军乐. 基于双螺旋点扩散函数工程的多焦点图像扫描显微.  , 2021, 70(3): 038701. doi: 10.7498/aps.70.20200640
    [3] 刘杰, 张建勋, 代煜. 基于多引导滤波的图像增强算法.  , 2018, 67(23): 238701. doi: 10.7498/aps.67.20181425
    [4] 尹诗白, 王卫星, 王一斌, 李大鹏, 邓箴. 贝叶斯迭代联合双边滤波的散焦图像快速盲复原.  , 2016, 65(23): 234202. doi: 10.7498/aps.65.234202
    [5] 周亮, 刘朝晖, 折文集. 可调谐相位板空域频域联合分析.  , 2015, 64(22): 224207. doi: 10.7498/aps.64.224207
    [6] 朱磊, 韩天琪, 水鹏朗, 卫建华, 顾梅花. 一种抑制合成孔径雷达图像相干斑的各向异性扩散滤波方法.  , 2014, 63(17): 179502. doi: 10.7498/aps.63.179502
    [7] 李娜, 贾迪, 赵慧洁, 苏云, 李妥妥. 基于改进维纳逆滤波的衍射成像光谱仪数据误差分析与重构.  , 2014, 63(17): 177801. doi: 10.7498/aps.63.177801
    [8] 陈卫东, 刘要龙, 朱奇光, 陈颖. 基于改进雁群PSO算法的模糊自适应扩展卡尔曼滤波的SLAM算法.  , 2013, 62(17): 170506. doi: 10.7498/aps.62.170506
    [9] 王华英, 于梦杰, 江亚男, 宋修法, 朱巧芬, 刘飞飞. 利用小尺寸电荷耦合器件实现数字全息高分辨成像.  , 2013, 62(24): 244203. doi: 10.7498/aps.62.244203
    [10] 石明珠, 许廷发, 梁炯, 李相民. 单幅模糊图像点扩散函数估计的梯度倒谱分析方法研究.  , 2013, 62(17): 174204. doi: 10.7498/aps.62.174204
    [11] 李斐. 相位差图像复原技术研究.  , 2012, 61(23): 230203. doi: 10.7498/aps.61.230203
    [12] 赵廷玉, 刘钦晓, 余飞鸿. 波前编码系统的点扩散函数稳相法分析.  , 2012, 61(7): 074207. doi: 10.7498/aps.61.074207
    [13] 刘金华, 佘堃. 基于双树复小波与波原子的图像扩散滤波.  , 2011, 60(12): 124203. doi: 10.7498/aps.60.124203
    [14] 赵贵敏, 陆明珠, 万明习, 方莉. 高分辨率扇形阵列超声激发振动声成像研究.  , 2009, 58(9): 6596-6603. doi: 10.7498/aps.58.6596
    [15] 赵廷玉, 叶 子, 张文字, 余飞鸿. 倾斜入射的波前编码系统的点扩散函数扩大效应分析.  , 2008, 57(1): 200-205. doi: 10.7498/aps.57.200
    [16] 陈法新, 郑 坚, 杨建伦. 中子厚针孔成像数值模拟研究.  , 2006, 55(11): 5947-5952. doi: 10.7498/aps.55.5947
    [17] 孔祥龙, 李玉同, 远晓辉, 于全芝, 郑志远, 梁文锡, 王兆华, 魏志义, 张 杰. Lucy-Richardson算法用于针孔图像的恢复.  , 2006, 55(5): 2364-2370. doi: 10.7498/aps.55.2364
    [18] 王 熠, 翟宏琛, 母国光. 基于形态矩阵的图像模糊匹配方法.  , 2005, 54(5): 1965-1968. doi: 10.7498/aps.54.1965
    [19] 梁艳梅, 翟宏琛, 母国光. 模糊集理论在彩色图像检索中的应用.  , 2002, 51(12): 2671-2675. doi: 10.7498/aps.51.2671
    [20] 胡慧玲, 杨新华, 罗小兰, 高崇寿, 杨泽森. 在理论物理研究中也必须以毛泽东思想为指导 也必须大搞群众运动.  , 1960, 16(8): 425-430. doi: 10.7498/aps.16.425
计量
  • 文章访问数:  7159
  • PDF下载量:  4286
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-09
  • 修回日期:  2015-01-04
  • 刊出日期:  2015-07-05

/

返回文章
返回
Baidu
map