-
针对一种新型的双路激光混沌复用系统, 建立相应的速率方程模型, 详细分析了两个主激光器的单个参数失配、多个参数同时失配、反馈强度差异以及频率失谐对混沌同步性能的影响, 并对此复用系统的安全性能和频谱性能进行了研究. 研究结果表明: 采用参数失配方案, 通过合理选择两个主激光器的参数, 可以保证两个主激光器之间的同步性能较差而两对主从激光器间实现高品质的混沌同步, 因此满足双路激光混沌复用的条件; 两个主激光器之间的参数失配对它们之间的同步性能影响较大, 然而对配对主从激光器间同步性能的影响并不明显, 进一步说明参数失配方案的有效性和可行性. 另外, 通过自相关函数和频谱分别分析混沌复用信号的时域和频域特征, 发现双路激光混沌复用系统可提供更高的安全性.Based on a novel multiplexing system of two distinct chaotic signals, the corresponding modified Lang-Kobayashi rate equations are established. The numerical investigations into the performance of chaos synchronization are carried out. In more detail, the influences of single-parameter mismatch, multi-parameter mismatch, feedback-strength discrepancy, and frequency detuning between the two master semiconductor lasers (MLs) on synchronization performance are investigated, respectively. Moreover, the security and spectrum characteristics are addressed briefly in this work. The numerical simulations show that by adopting parameter mismatch, i.e., choosing appropriate system parameters of the two MLs, the correlation between the two MLs becomes extremely low, while the matched master-slave laser pairs can achieve high-quality chaos synchronization, indicating that the condition of optical chaos multiplexing is satisfied; the parameter mismatch between the MLs has a significant influence on their synchronization quality, but no obvious influence on their synchronization quality of the matched master-slave laser pairs, which further demonstrates the validity and feasibility of the chaos multiplexing scheme. More importantly, in this paper, the multiplexed chaotic signals in the time and frequency domains in terms of autocorrelation function and power spectrum are analyzed, demonstrating that the present system could provide higher security than the single external-cavity semiconductor laser.
-
Keywords:
- chaos multiplex /
- active-passive decomposition /
- parameter mismatch /
- chaos synchronization
[1] Heil T, Mulet J, Fischer I, Mirasso C R, Peil M, Colet P 2002 IEEE J. Quantum Electron. 38 1162
[2] Rogister F, Locquet A, Pieroux D, Sciamanna M, Deparis O, Megret P, Blondel M 2001 Opt. Lett. 26 1486
[3] Pisarchik A N, Ruiz-Oliveras F R 2010 IEEE J. Quantum Electron. 46 279
[4] Paul J, Sivaprakasam S, Shore K A 2004 J. Opt. Soc. Am. B 21 514
[5] Annovazzi L V, Donati S, Scire A 1996 IEEE J. Quantum Electron. 32 953
[6] Argyris A, Syvrids D, Larger L, Annovazzi V, Colet P, Fischer P, Garcia O J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343
[7] Li N Q, Pan W, Yan L S, Luo B, Xu M F, Tang Y L, Jiang N, Xiang S Y, Zhang Q 2012 J. Opt. Soc. Am. B 29 101
[8] Li X F, Pan W, Luo B, Ma D 2006 IEEE. J. Quantum Electron. 42 953
[9] Lin F Y, Liu J M 2004 IEEE J. Sel. Topics Quantum Electron. 10 991
[10] Wang A B, Wang Y C 2010 Sci. China: Inform. Sci. 53 398
[11] Zhao Q C, Yin H X 2013 Laser Optoelectron. Prog. 50 1 (in Chinese) [赵清春, 殷洪玺 2013 激光与光电子进展 50 1]
[12] Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Davis P 2008 Nat. Photon. 2 728
[13] Zhang J Z, Wang Y C, Liu M, Xue L G, Li P, Wang A B, Zhang M J 2012 Opt. Express 20 7496
[14] Li N Q, Pan W, Luo B, Yan L S, Zou X H, Jiang N, Xiang S Y 2012 IEEE Photon. Technol. Lett. 24 1072
[15] Hu H P, Su W, Liu L F, Yu Z L 2014 Phys. Lett. A 378 184
[16] Bogris A, Kanakidis D, Argyris A, Syvridis D 2004 IEEE J. Quantum Electron. 40 1326
[17] Yan S L 2012 Commun. Nonlinear Sci. 17 2896
[18] Liu Y R, Wu Z M, Wu J G, Li P, Xia G Q 2012 Acta Phys. Sin. 61 024203 (in Chinese) [刘宇然, 吴正茂, 吴加贵, 李萍, 夏光琼 2012 61 024203]
[19] Deng W, Xia G Q, Wu Z M 2013 Acta Phys. Sin. 62 164209 (in Chinese) [邓伟, 夏光琼, 吴正茂 2013 62 164209]
[20] Zhang W L, Pan W, Luo B, Zou X H, Wang M Y 2008 IEEE Photon. Technol. Lett. 20 712
[21] Zhang J Z, Wang A B, Wang Y C 2009 Acta Phys. Sin. 58 3793 (in Chinese) [张建忠, 王安帮, 王云才 2009 58 3793]
[22] Rontani D, Locquet A, Sciamanna M, Citrin D S 2010 Opt. Lett. 35 2016
[23] Zhao Q C, Yin H X 2013 Opt. Laser Technol. 47 208
[24] Zhao Q C, Yin H X, Chen X L 2012 Appl. Opt. 51 5585
[25] Lang R, Kobayashi K 1980 IEEE J. Quantum Electron. 16 347
[26] Rontani D, Locquet A, Sciamanna M, Citrin D S 2007 Opt. Lett. 32 2960
[27] Lee M W, Rees P, Shore K A, Ortin S, Pesquera L, Valle A 2005 IEE Proc. Optoelectron. 152 97
[28] Wu J Q, Xia G Q, Wu Z M 2009 Opt. Express 17 20124
[29] Li N Q, Pan W, Xiang S Y, Yan L S, Luo B, Zou X H, Zhang L Y, Mu P H 2012 IEEE J. Quantum Electron. 48 1339
[30] Li N Q, Pan W, Yan L S, Luo B, Zou X H, Xiang S Y 2013 IEEE J. Sel. Topics Quantum Electron. 19 0600109
[31] Wu J Q, Wu Z M, Tang X, Lin X D, Deng T, Xia G Q, Feng G Y 2011 IEEE Photon. Technol. Lett. 23 759
-
[1] Heil T, Mulet J, Fischer I, Mirasso C R, Peil M, Colet P 2002 IEEE J. Quantum Electron. 38 1162
[2] Rogister F, Locquet A, Pieroux D, Sciamanna M, Deparis O, Megret P, Blondel M 2001 Opt. Lett. 26 1486
[3] Pisarchik A N, Ruiz-Oliveras F R 2010 IEEE J. Quantum Electron. 46 279
[4] Paul J, Sivaprakasam S, Shore K A 2004 J. Opt. Soc. Am. B 21 514
[5] Annovazzi L V, Donati S, Scire A 1996 IEEE J. Quantum Electron. 32 953
[6] Argyris A, Syvrids D, Larger L, Annovazzi V, Colet P, Fischer P, Garcia O J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343
[7] Li N Q, Pan W, Yan L S, Luo B, Xu M F, Tang Y L, Jiang N, Xiang S Y, Zhang Q 2012 J. Opt. Soc. Am. B 29 101
[8] Li X F, Pan W, Luo B, Ma D 2006 IEEE. J. Quantum Electron. 42 953
[9] Lin F Y, Liu J M 2004 IEEE J. Sel. Topics Quantum Electron. 10 991
[10] Wang A B, Wang Y C 2010 Sci. China: Inform. Sci. 53 398
[11] Zhao Q C, Yin H X 2013 Laser Optoelectron. Prog. 50 1 (in Chinese) [赵清春, 殷洪玺 2013 激光与光电子进展 50 1]
[12] Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Davis P 2008 Nat. Photon. 2 728
[13] Zhang J Z, Wang Y C, Liu M, Xue L G, Li P, Wang A B, Zhang M J 2012 Opt. Express 20 7496
[14] Li N Q, Pan W, Luo B, Yan L S, Zou X H, Jiang N, Xiang S Y 2012 IEEE Photon. Technol. Lett. 24 1072
[15] Hu H P, Su W, Liu L F, Yu Z L 2014 Phys. Lett. A 378 184
[16] Bogris A, Kanakidis D, Argyris A, Syvridis D 2004 IEEE J. Quantum Electron. 40 1326
[17] Yan S L 2012 Commun. Nonlinear Sci. 17 2896
[18] Liu Y R, Wu Z M, Wu J G, Li P, Xia G Q 2012 Acta Phys. Sin. 61 024203 (in Chinese) [刘宇然, 吴正茂, 吴加贵, 李萍, 夏光琼 2012 61 024203]
[19] Deng W, Xia G Q, Wu Z M 2013 Acta Phys. Sin. 62 164209 (in Chinese) [邓伟, 夏光琼, 吴正茂 2013 62 164209]
[20] Zhang W L, Pan W, Luo B, Zou X H, Wang M Y 2008 IEEE Photon. Technol. Lett. 20 712
[21] Zhang J Z, Wang A B, Wang Y C 2009 Acta Phys. Sin. 58 3793 (in Chinese) [张建忠, 王安帮, 王云才 2009 58 3793]
[22] Rontani D, Locquet A, Sciamanna M, Citrin D S 2010 Opt. Lett. 35 2016
[23] Zhao Q C, Yin H X 2013 Opt. Laser Technol. 47 208
[24] Zhao Q C, Yin H X, Chen X L 2012 Appl. Opt. 51 5585
[25] Lang R, Kobayashi K 1980 IEEE J. Quantum Electron. 16 347
[26] Rontani D, Locquet A, Sciamanna M, Citrin D S 2007 Opt. Lett. 32 2960
[27] Lee M W, Rees P, Shore K A, Ortin S, Pesquera L, Valle A 2005 IEE Proc. Optoelectron. 152 97
[28] Wu J Q, Xia G Q, Wu Z M 2009 Opt. Express 17 20124
[29] Li N Q, Pan W, Xiang S Y, Yan L S, Luo B, Zou X H, Zhang L Y, Mu P H 2012 IEEE J. Quantum Electron. 48 1339
[30] Li N Q, Pan W, Yan L S, Luo B, Zou X H, Xiang S Y 2013 IEEE J. Sel. Topics Quantum Electron. 19 0600109
[31] Wu J Q, Wu Z M, Tang X, Lin X D, Deng T, Xia G Q, Feng G Y 2011 IEEE Photon. Technol. Lett. 23 759
计量
- 文章访问数: 6191
- PDF下载量: 361
- 被引次数: 0