搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

同心旋转圆柱间隙流场中纤维取向的动态模拟

杨斌鑫 欧阳洁 周文 王芳 栗雪娟

引用本文:
Citation:

同心旋转圆柱间隙流场中纤维取向的动态模拟

杨斌鑫, 欧阳洁, 周文, 王芳, 栗雪娟

Dynamic simulation of fiber orientation in the gap flow field between two rotating cylinders

Yang Bin-Xin, Ouyang Jie, Zhou Wen, Wang Fang, Li Xue-Juan
PDF
导出引用
  • 本文对两同心旋转圆柱间隙形成的流场以及处于流场中的纤维运动和取向进行了数值研究. 在贴体坐标网格下求解了流场控制方程, 得到了流场中的速度、压力等物理量. 研究了两同心圆柱同速反向旋转以及仅内层圆柱旋转这两种情况下的纤维运动和取向状态. 得到了处于这两种情况下的纤维在流场中从静止到开始运动和取向直至最终达到稳定状态的动态详细过程. 结果表明, 当两个圆柱同速反向旋转时, 纤维运动与取向也相应的呈现两层结构; 而仅内圆柱旋转时, 纤维运动与取向呈单层结构. 在两种情况下, 纤维均沿流线方向运动和取向. 讨论了纤维长径比对纤维取向的影响, 结果表明随着纤维长径比的增加, 纤维沿流线取向的取向度逐渐增强.
    The gap flow field formed by two rotating cylinders and the fiber orientation in the gap flow field are studied numerically. The finite volume method on the collocated body fitted grid is used for solving the field. On the assumption that there is no relative motion between the fibers and the fluid, the motion of the fibers is determined. The velocities of fibers are calculated by bi-linear interpolation method. The orientation of fibers is obtained by solving the Jeffery equation. Periodic boundary conditions are used for the fiber motion to ensure that the fibers keep staying in the computational area. Two cases i. e., two cylinders rotate in the opposite directions with the same speed and only the mandrel cylinder rotates, are considered. Physical quantities, such as velocity and pressure, for each case are obtained. For the first case, the velocity and pressure are completely symmetric about the mid-line of the computational area and the absolute values of the maximum and minimum velocity are equal due to the fact that both the casing and mandrel cylinders rotate at the same speed. The absolute values of the maximum and minimum pressure are not equal because the radii of the two cylinders are different. For the second case that only the mandrel cylinder rotates, the symmetries of the velocity and pressure about the mid-line of the computational area can also be found although the absolute values of the maximum and minimum velocity are not equal because of the different velocities of the two cylinders. Fiber motions and orientations at different times for both cases are captured. The twisting of fibers (matrix) can be observed vividly. For the case that the casing and the mandrel cylinders rotate in the opposite directions, fibers move and orientate in a two-layer structure. While for the case that only the mandrel cylinder rotates, fibers move and orientation in a single-layered structure. For both cases, the fibers have a strong tendency to align along the stream lines of the field. The influence of the slenderness ratio of fibers on fiber orientation is also studied. A stronger tendency to align along the stream lines of the field can be found as the slenderness ratio of fibers increases.
    • 基金项目: 国家重点基础研究发展计划(批准号:2012CB025903)、国家自然科学基金(批准号:51078250)、天元基金(批准号:11426170)、山西省自然科学基金(批准号:2014011009-2,2012011019-2)、山西省研究生优秀创新项目(批准号:20133117)和太原科技大学博士基金(批准号:20112011)资助的课题.
    • Funds: Project supported by National Basic Research Program of China (Grant No. 2012CB025903), the National Natural Science Foundation of China (Grant No. 51078250), the TianYuan Special Funds of the National Natural Science Foundation of China (Grant No. 11426170), the Natural Science Foundation of Shanxi Province, China (Grant Nos. 20140110009-2, 2012011019-2), the Outstanding Graduate Innovation Project in Shanxi Province, China (Grant No. 20133117), and the Doctoral Sustentation Fund of Taiyuan University of Science and Technology, China (Grant No. 20112011).
    [1]

    Yang B X, Ouyang J, Li X J 2012 Acta Phys. Sin. 61 044701 (in Chinese) [杨斌鑫, 欧阳洁, 栗雪娟 2012 61 044701]

    [2]

    Zhang H P, Ouyang J, Ruan C L 2009 Acta Phys. Sin. 58 619 (in Chinese) [张红平, 欧阳洁, 阮春蕾 2009 58 619]

    [3]

    Wan Z H, Sun Z L, You Z J 2007 J. Zhejiang Univ.-SC. 8 1435

    [4]

    You Z J, Lin J Z, Yu Z S 2004 Fluid Dyn. Res. 34 251

    [5]

    Pilipenko V N, Kalinichenko N M, Lemak A S 1981 Sov. Phys. Dokl. 26 646

    [6]

    Wan Z H, Lin J Z, You Z J 2005 J. Zhejiang Univ.-SC. 6 1

    [7]

    Wan Z H, Lin J Z, You Z J 2007 J. Zhejiang Univ. 23 41

    [8]

    Parsheh M, Brown M L, Aidun C K 2006 J. Non-Newton. Fluid 136 38

    [9]

    Khosla P K, Rubin S G 1974 Comput. Fluids 2 207

    [10]

    Jasak H 1996 Ph. D. Dissertation (London:University of London)

    [11]

    Pantaka S V 1980 Numerical heat transfer and fluid flow (London:CRC Press) p124

    [12]

    Ouyang J, Li J H 1999 Chem. Eng. Sci. 54 2077

    [13]

    Ouyang J, Li J H 1999 Chem. Eng. Sci. 54 5427

    [14]

    Jeffery G B 1992 P. Roy. Soc. Lond. A 102 161

    [15]

    Zhou K, Lin J Z 2008 Fiber Polym. 9 39

    [16]

    Thompson J F, Thames F C, Martin C W 1974 J. Comput. Phys. 15 299

    [17]

    Winslow A M 1967 J. Comput. Phys. 2 49

  • [1]

    Yang B X, Ouyang J, Li X J 2012 Acta Phys. Sin. 61 044701 (in Chinese) [杨斌鑫, 欧阳洁, 栗雪娟 2012 61 044701]

    [2]

    Zhang H P, Ouyang J, Ruan C L 2009 Acta Phys. Sin. 58 619 (in Chinese) [张红平, 欧阳洁, 阮春蕾 2009 58 619]

    [3]

    Wan Z H, Sun Z L, You Z J 2007 J. Zhejiang Univ.-SC. 8 1435

    [4]

    You Z J, Lin J Z, Yu Z S 2004 Fluid Dyn. Res. 34 251

    [5]

    Pilipenko V N, Kalinichenko N M, Lemak A S 1981 Sov. Phys. Dokl. 26 646

    [6]

    Wan Z H, Lin J Z, You Z J 2005 J. Zhejiang Univ.-SC. 6 1

    [7]

    Wan Z H, Lin J Z, You Z J 2007 J. Zhejiang Univ. 23 41

    [8]

    Parsheh M, Brown M L, Aidun C K 2006 J. Non-Newton. Fluid 136 38

    [9]

    Khosla P K, Rubin S G 1974 Comput. Fluids 2 207

    [10]

    Jasak H 1996 Ph. D. Dissertation (London:University of London)

    [11]

    Pantaka S V 1980 Numerical heat transfer and fluid flow (London:CRC Press) p124

    [12]

    Ouyang J, Li J H 1999 Chem. Eng. Sci. 54 2077

    [13]

    Ouyang J, Li J H 1999 Chem. Eng. Sci. 54 5427

    [14]

    Jeffery G B 1992 P. Roy. Soc. Lond. A 102 161

    [15]

    Zhou K, Lin J Z 2008 Fiber Polym. 9 39

    [16]

    Thompson J F, Thames F C, Martin C W 1974 J. Comput. Phys. 15 299

    [17]

    Winslow A M 1967 J. Comput. Phys. 2 49

  • [1] 张大军. 可积系统的双线性约化方法.  , 2023, 72(10): 100203. doi: 10.7498/aps.72.20230063
    [2] 张兴坊, 刘凤收, 闫昕, 梁兰菊, 韦德全. 同心椭圆柱-纳米管结构的双重Fano共振研究.  , 2019, 68(6): 067301. doi: 10.7498/aps.68.20182249
    [3] 陆智淼, 蔡力, 温激鸿, 温熙森. 基于五模材料的圆柱声隐身斗篷坐标变换设计.  , 2016, 65(17): 174301. doi: 10.7498/aps.65.174301
    [4] 杜红秀, 魏宏, 秦义校, 李中华, 王同尊. 轴对称构件受力分析的插值粒子法.  , 2015, 64(10): 100204. doi: 10.7498/aps.64.100204
    [5] 刘伟波, 董丽芳. 介质阻挡放电中同心圆环斑图的产生机理.  , 2015, 64(24): 245202. doi: 10.7498/aps.64.245202
    [6] 霍天旭, 乔亮, 王涛, 李发伸. 取向易面各向异性羰基铁粉体的高频磁性研究(已撤稿).  , 2014, 63(16): 167503. doi: 10.7498/aps.63.167503
    [7] 李中华, 秦义校, 崔小朝. 弹性力学的插值型重构核粒子法.  , 2012, 61(8): 080205. doi: 10.7498/aps.61.080205
    [8] 胡家光, 徐文, 肖宜明, 张丫丫. 晶格中心插入体的对称性及取向对二维声子晶体带隙的影响.  , 2012, 61(23): 234302. doi: 10.7498/aps.61.234302
    [9] 杨斌鑫, 欧阳洁, 栗雪娟. 复杂型腔充模中纤维取向的动态模拟.  , 2012, 61(4): 044701. doi: 10.7498/aps.61.044701
    [10] 吴志强, 张振华, 郝颖. 双线性双滞后环系统的约束分岔.  , 2011, 60(12): 120503. doi: 10.7498/aps.60.120503
    [11] 李俊昌, 樊则宾. 彩色数字全息的非插值波面重建算法研究.  , 2010, 59(4): 2457-2461. doi: 10.7498/aps.59.2457
    [12] 汪红志, 许凌峰, 俞捷, 黄清明, 王晓琰, 陆伦, 王鹤, 黄勇, 程红岩, 张学龙, 李鲠颖. 基于核磁共振弹性成像技术的肝纤维化分级体模研究.  , 2010, 59(10): 7463-7471. doi: 10.7498/aps.59.7463
    [13] 张迎晨, 朱海燕, 吴红艳, 邱夷平. 氦等离子体处理对纳米二氧化硅溶胶涂覆T300碳纤维拉伸性能的影响.  , 2009, 58(13): 298-S305. doi: 10.7498/aps.58.298
    [14] 张迎晨, 朱海燕, 黄婧南, 邹静, 吴红艳, 邱夷平. 氧等离子体处理对纳米二氧化硅溶胶涂覆高强、高模聚乙烯纤维拉伸性能的影响.  , 2009, 58(13): 292-S297. doi: 10.7498/aps.58.292
    [15] 张红平, 欧阳洁, 阮春蕾. 纤维悬浮聚合物熔体描述的均一结构多尺度模型.  , 2009, 58(1): 619-630. doi: 10.7498/aps.58.619
    [16] 徐世民, 蒋继建, 李洪奇, 徐兴磊. 两体组合坐标表象的建立、性质及应用.  , 2008, 57(12): 7430-7437. doi: 10.7498/aps.57.7430
    [17] 汪 渊, 宋忠孝, 徐可为. 体心立方金属W薄膜晶体取向的膜厚尺寸效应及其表面映射.  , 2007, 56(12): 7248-7254. doi: 10.7498/aps.56.7248
    [18] 许宗荣, 高艳玲. 量子散射跃迁矩阵元的双线性变分法.  , 1995, 44(1): 24-28. doi: 10.7498/aps.44.24
    [19] 楼森岳, 俞军, 翁建平, 钱贤民. 2+1维双线性Sawada-Kotera方程的对称结构.  , 1994, 43(7): 1050-1055. doi: 10.7498/aps.43.1050
    [20] 熊小明, 周世勋. 质心坐标系中分数量子Hall效应体系的能量本征值.  , 1988, 37(6): 1010-1013. doi: 10.7498/aps.37.1010
计量
  • 文章访问数:  5089
  • PDF下载量:  128
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-23
  • 修回日期:  2015-01-15
  • 刊出日期:  2015-06-05

/

返回文章
返回
Baidu
map