搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太赫兹场和倾斜磁场对超晶格电子动力学特性调控规律研究

王长 曹俊诚

引用本文:
Citation:

太赫兹场和倾斜磁场对超晶格电子动力学特性调控规律研究

王长, 曹俊诚

Nonlinear electron transport in superlattice driven by a terahertz field and a tilted magnetic field

Wang Chang, Cao Jun-Cheng
PDF
导出引用
  • 微带超晶格在磁场和太赫兹场调控下表现出丰富而复杂的动力学行为, 研究微带电子在外场作用下的输运性质对于太赫兹器件设计与研制具有重要意义. 本文采用准经典的运动方程描述了超晶格微带电子在沿超晶格生长方向(z方向)的THz场和相对于z轴倾斜的磁场共同作用下的非线性动力学特性. 研究表明, 在太赫兹场和倾斜磁场共同作用下, 超晶格微带电子随时间的演化表现出周期和混沌等新奇的运动状态. 采用庞加莱分支图详细研究了微带电子在磁场和太赫兹场调控下的运动规律, 给出了电子运行于周期和混沌运动状态的参数区间. 在电场和磁场作用下, 微带电子将产生布洛赫振荡和回旋振荡, 形成复杂的协同耦合振荡. 太赫兹场与这些协同振荡模式之间的相互作用是导致电子表现出周期态、混沌态以及倍周期分叉等现象的主要原因.
    Vertical electron transport in semiconductor superlattice has been the focus of science and technology during the past two decades due to the potential application of superlattice in terahertz devices. When driven by electromagnetic field, many novel phenomena have been found in superlattice. Here we study the chaotic electron transport in miniband superlattice driven by dc+ac electric fields along the growth axis (z-axis) and a magnetic field tilted to z-axis using semiclassical equations of motion in the preflence of dissipation. We calculate the electron momentum by changing the magnetic field or amplitude of the terahertz field. It is shown that the momentum py(t) of miniband electron exhibits complicated oscillation modes while changing the control parameters. Poincaré bifurcation diagram and power spectrum are adopted to analyze the nonlinear electron states. Poincaré bifurcation diagram is obtained by plotting pym = py(mTac) (with m = 1, 2, 3,… and Tac the period of ac terahertz field) as functions of ac amplitude E1 after the transients decay. The periodic and aperiodic regions can be distinguished from each other since there are a large number of points in the chaotic regions. When the magnetic field is increased from 1.5 to 2 T, the Poincaré bifurcation diagram changes dramatically due to the strong effect of magnetic field on electron motion. The oscillating state of py(t) may be changed between periodic and chaotic syates. Power spectra of electron momentum py for different values of E1 (= 2.06, 2.18, 2.388, and 2.72) are calculated for a deep insight into the nonlinear oscillating mode. It is found that the power spectra of n-periodic states show peaks at frequencies ifac/n (with i = 1, 2, 3,…); the power spectra of chaotic states are very irregular with a large number of peaks. We demonstrate that the dissipation and resonance between Bloch oscillation frequency and cyclotron frequency play an important role in the electron transport process. We attribute the emerging of periodic and chaotic states in a superlattice to the interaction between terahertz radiation and internal cooperative oscillating mode related to Bloch oscillation and cyclotron oscillation. In the case of ωB≠iωc, the time-dependent electron motion is chaotic in most regions of the parameter space. Results of the preflent paper are useful for designing terahertz devices based on the semiconductor superlattices.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2014CB339803)、国家高科技研究发展计划(批准号: 2011AA010205)、国家自然科学基金(批准号: 61204135, 61131006, 61321492)、国家重大科学仪器设备开发专项(批准号: 2011YQ150021)、02国家科技重大专项(批准号: 2011ZX02707)、中科院创新团队国际合作伙伴计划和上海市科学技术委员会(批准号: 14530711300)资助的课题.
    • Funds: Project supported by the 973 Program of China (Grant No. 2014CB339803), the 863 Program of China (Grant No. 2011AA010205), the National Natural Science Foundation of China (Grant Nos. 61204135, 61131006, 61321492), the Major National Development Project of Scientific Instrument and Equipment of China (Grant No. 2011YQ150021), the National Science and Technology Major Project, China (Grant No. 2011ZX02707), the International Collaboration and Innovation Program on High Mobility Materials Engineering of the Chinese Academy of Sciences, and the Shanghai Municipal Commission of Science and Technology (Grant No. 14530711300).
    [1]

    Lei X L, Horing N J M, Cui H L 1991 Phys. Rev. Lett. 66 3277

    [2]

    Waschke C, Roskos H G, Schwedler R, Leo K, Kurz H, K. Köhler 1993 Phys. Rev. Lett. 70 3319

    [3]

    Winnerl S, Schomburg E, Brandl S, Kus O, Renk K F, Wanke M C, Allen S J, Ignatov A A, Ustinov V, Zhukov A, Kop’ev P S 2000 Appl. Phys. Lett. 77 1259

    [4]

    Sun B, Wang J, Ge W, Wang Y, Jiang D, Zhu H, Wang H, Deng Y, Feng S 1999 Phys. Rev. B 60 8866

    [5]

    Wacker A 2002 Phys. Rep. 357 1

    [6]

    Zhang Q Y, Tian Q 2002 Acta Phys. Sin. 51 1804 (in Chinese) [张启义, 田强 2002 51 1804]

    [7]

    Hyart T, Mattas J, Alekseev K N 2009 Phys. Rev. Lett. 103 117401

    [8]

    Wang R Z, Yuan R, Song X M, Wei J S, Yan H 2009 Acta Phys. Sin. 58 3437 (in Chinese) [王如志, 袁瑞, 宋雪梅, 魏金生, 严辉 2009 58 3437]

    [9]

    Wang C, Cao J C 2012 J. Appl. Phys. 111 053711

    [10]

    Li W, Reidler I, Aviad Y, Huang Y, Song H, Zhang Y, Rosenbluh M, Kanter I 2013 Phys. Rev. Lett. 111 044102

    [11]

    Ignatov A A 2014 J. Appl. Phys. 116 084506

    [12]

    Unterrainer K, Keay B J, Wanke M C, Allen S J, Leonard D, Medeiros-Ribeiro G, Bhattacharya U, Rodwell M J W 1996 Phys. Rev. Lett. 76 2973

    [13]

    Lei X L 1997 J. Appl. Phys. 82 718

    [14]

    Aguado R, Platero G 1998 Phys. Rev. Lett. 81 4971

    [15]

    Bauer T, Kolb J, Hummel A B, Roskos H G, Kosevich Y, Klaus Köhler 2002 Phys. Rev. Lett. 88 086801

    [16]

    Kosevich Y A, Hummel A B, Roskos H G, Köhler K 2006 Phys. Rev. Lett. 96 137403

    [17]

    Bulashenko O M, Bonilla L L 1995 Phys. Rev. B 52 7849

    [18]

    Zhang Y, Kastrup J, Klann R, Ploog K H, Grahn H T 1996 Phys. Rev. Lett. 77 3001

    [19]

    Cao J C, Liu H C, Lei X L 2000 Phys. Rev. B 61 5546

    [20]

    Fromhold T M, Patane à, Bujkiewicz S, Wilkinson P B, Fowler D, Sherwood D, Stapleton S P, Krokhin A A, Eaves L, Henini M, Sankeshwar N S, Sheard F W 2004 Nature 428 726

    [21]

    Wang C, Wang F, Cao J C 2014 Chaos 24 033109

  • [1]

    Lei X L, Horing N J M, Cui H L 1991 Phys. Rev. Lett. 66 3277

    [2]

    Waschke C, Roskos H G, Schwedler R, Leo K, Kurz H, K. Köhler 1993 Phys. Rev. Lett. 70 3319

    [3]

    Winnerl S, Schomburg E, Brandl S, Kus O, Renk K F, Wanke M C, Allen S J, Ignatov A A, Ustinov V, Zhukov A, Kop’ev P S 2000 Appl. Phys. Lett. 77 1259

    [4]

    Sun B, Wang J, Ge W, Wang Y, Jiang D, Zhu H, Wang H, Deng Y, Feng S 1999 Phys. Rev. B 60 8866

    [5]

    Wacker A 2002 Phys. Rep. 357 1

    [6]

    Zhang Q Y, Tian Q 2002 Acta Phys. Sin. 51 1804 (in Chinese) [张启义, 田强 2002 51 1804]

    [7]

    Hyart T, Mattas J, Alekseev K N 2009 Phys. Rev. Lett. 103 117401

    [8]

    Wang R Z, Yuan R, Song X M, Wei J S, Yan H 2009 Acta Phys. Sin. 58 3437 (in Chinese) [王如志, 袁瑞, 宋雪梅, 魏金生, 严辉 2009 58 3437]

    [9]

    Wang C, Cao J C 2012 J. Appl. Phys. 111 053711

    [10]

    Li W, Reidler I, Aviad Y, Huang Y, Song H, Zhang Y, Rosenbluh M, Kanter I 2013 Phys. Rev. Lett. 111 044102

    [11]

    Ignatov A A 2014 J. Appl. Phys. 116 084506

    [12]

    Unterrainer K, Keay B J, Wanke M C, Allen S J, Leonard D, Medeiros-Ribeiro G, Bhattacharya U, Rodwell M J W 1996 Phys. Rev. Lett. 76 2973

    [13]

    Lei X L 1997 J. Appl. Phys. 82 718

    [14]

    Aguado R, Platero G 1998 Phys. Rev. Lett. 81 4971

    [15]

    Bauer T, Kolb J, Hummel A B, Roskos H G, Kosevich Y, Klaus Köhler 2002 Phys. Rev. Lett. 88 086801

    [16]

    Kosevich Y A, Hummel A B, Roskos H G, Köhler K 2006 Phys. Rev. Lett. 96 137403

    [17]

    Bulashenko O M, Bonilla L L 1995 Phys. Rev. B 52 7849

    [18]

    Zhang Y, Kastrup J, Klann R, Ploog K H, Grahn H T 1996 Phys. Rev. Lett. 77 3001

    [19]

    Cao J C, Liu H C, Lei X L 2000 Phys. Rev. B 61 5546

    [20]

    Fromhold T M, Patane à, Bujkiewicz S, Wilkinson P B, Fowler D, Sherwood D, Stapleton S P, Krokhin A A, Eaves L, Henini M, Sankeshwar N S, Sheard F W 2004 Nature 428 726

    [21]

    Wang C, Wang F, Cao J C 2014 Chaos 24 033109

  • [1] 张向, 王玥, 张婉莹, 张晓菊, 罗帆, 宋博晨, 张狂, 施卫. 单壁碳纳米管太赫兹超表面窄带吸收及其传感特性.  , 2024, 73(2): 026102. doi: 10.7498/aps.73.20231357
    [2] 汪静丽, 杨志雄, 董先超, 尹亮, 万洪丹, 陈鹤鸣, 钟凯. 基于VO2的太赫兹各向异性编码超表面.  , 2023, 72(12): 124204. doi: 10.7498/aps.72.20222171
    [3] 金嘉升, 马成举, 张垚, 张跃斌, 鲍士仟, 李咪, 李东明, 刘洺, 刘芊震, 张贻歆. 基于相变材料的慢光和吸收可切换多功能太赫兹超材料.  , 2023, 72(8): 084202. doi: 10.7498/aps.72.20222336
    [4] 汪静丽, 董先超, 尹亮, 杨志雄, 万洪丹, 陈鹤鸣, 钟凯. 基于二氧化钒的太赫兹双频多功能编码超表面.  , 2023, 72(9): 098101. doi: 10.7498/aps.72.20222321
    [5] 向星诚, 马海贝, 王磊, 田达, 张伟, 张彩虹, 吴敬波, 范克彬, 金飚兵, 陈健, 吴培亨. 利用样品阱实现太赫兹超材料的超微量传感.  , 2023, 72(12): 128701. doi: 10.7498/aps.72.20230080
    [6] 黄若彤, 李九生. 太赫兹多波束调控反射编码超表面.  , 2023, 72(5): 054203. doi: 10.7498/aps.72.20221962
    [7] 葛宏义, 李丽, 蒋玉英, 李广明, 王飞, 吕明, 张元, 李智. 基于双开口金属环的太赫兹超材料吸波体传感器.  , 2022, 71(10): 108701. doi: 10.7498/aps.71.20212303
    [8] 陈闻博, 陈鹤鸣. 基于超材料复合结构的太赫兹液晶移相器.  , 2022, 71(17): 178701. doi: 10.7498/aps.71.20212400
    [9] 庞慧中, 王鑫, 王俊林, 王宗利, 刘苏雅拉图, 田虎强. 双频带太赫兹超材料吸波体传感器传感特性.  , 2021, 70(16): 168101. doi: 10.7498/aps.70.20210062
    [10] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器.  , 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [11] 苏玉伦, 尉正行, 程亮, 齐静波. 基于超快自旋-电荷转换的太赫兹辐射源.  , 2020, 69(20): 204202. doi: 10.7498/aps.69.20200715
    [12] 刘延飞, 陈诚, 杨东东, 李修建. 基于GaAs/Al0.45Ga0.55As超晶格芯片自发混沌振荡的8 Gb/s物理真随机数实现.  , 2020, 69(10): 100504. doi: 10.7498/aps.69.20200136
    [13] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束.  , 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [14] 闫昕, 梁兰菊, 张璋, 杨茂生, 韦德泉, 王猛, 李院平, 吕依颖, 张兴坊, 丁欣, 姚建铨. 基于石墨烯编码超构材料的太赫兹波束多功能动态调控.  , 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
    [15] 张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博. 基于石墨烯的太赫兹波散射可调谐超表面.  , 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [16] 杨磊, 范飞, 陈猛, 张选洲, 常胜江. 多功能太赫兹超表面偏振控制器.  , 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [17] 闫昕, 梁兰菊, 张雅婷, 丁欣, 姚建铨. 基于编码超表面的太赫兹宽频段雷达散射截面缩减的研究.  , 2015, 64(15): 158101. doi: 10.7498/aps.64.158101
    [18] 张玉萍, 李彤彤, 吕欢欢, 黄晓燕, 张会云. 工字形太赫兹超材料吸波体的传感特性研究.  , 2015, 64(11): 117801. doi: 10.7498/aps.64.117801
    [19] 罗晓华, 何为, 吴木营, 罗诗裕. 准周期激励与应变超晶格的动力学稳定性.  , 2013, 62(24): 247301. doi: 10.7498/aps.62.247301
    [20] 邓成良, 邵明珠, 罗诗裕. 带电粒子同超晶格的相互作用与系统的混沌行为.  , 2006, 55(5): 2422-2426. doi: 10.7498/aps.55.2422
计量
  • 文章访问数:  6746
  • PDF下载量:  691
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-18
  • 修回日期:  2014-12-10
  • 刊出日期:  2015-05-05

/

返回文章
返回
Baidu
map