搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

转动潮汐变形双星理论模型研究

詹琼 宋汉峰 邰丽婷 王江涛

引用本文:
Citation:

转动潮汐变形双星理论模型研究

詹琼, 宋汉峰, 邰丽婷, 王江涛

Theoretical model of the rotationally and tidally distorted binaries

Zhan Qiong, Song Han-Feng, Tai Li-Ting, Wang Jiang-Tao
PDF
导出引用
  • 转动和潮汐效应是影响双星系统结构和演化不可忽略的重要物理因素. 根据大质量双星系统V478 Cyg的观测结果, 检验了提出的转动潮汐变形的理论模型. 将转动潮汐变形的模型与传统的双星演化模型对比发现: 转动和潮汐效应使恒星外层(低于平均密度区)发生的形变远大于内层; 恒星两极点重力加速度变大, 赤道面上重力加速度变小; 转动潮汐变形模型具有较大的半径、赤道速度和中心集中度, 较低的氢核能产生率, 恒星向低温和低光度端演化. 此外, 大质量双星系统V478 Cyg由潮汐形变造成的拱线运动速率大于转动形变造成的拱线运动速率, 广义相对论效应造成的拱线运动最小. 由于主星具有较高的中心集中度, 次星潮汐、转动形变造成的拱线运动速率均大于主星相应的拱线运动速率.
    Rotation and tide are two important factors which have an influence on the stellar structure and evolution. They cannot be neglected. According to the observation data of the massive binary system V478 Cyg, we test the theoretical model including the deformation which is induced by rotation and tide (our model). We compare our model with Kähler-Eggleton (KE) model, and the distorted model is more consistent with observations than the traditional model (KE model). Besides, it is found that great deformation occurs in the outer envelope, where its density is lower than the mean density. Rotation and tide can cause the gravity at the two polar points to increase and the gravity in the equatorial plane to decrease. Therefore, the radiative flux, which depends on the local effective gravity, is not constant on the equipotentials any more. The poles which become hotter, experience a high mass loss than the equator, which becomes cooler. Furthermore, the two components in our model have bigger radii, equatorial velocities and central compactness and low H-energy production rate. The bigger mean radius of the distorted star produces a smaller temperature gradient inside the star, resulting in a lower energy transport. The lower energy generation rate inside the distorted model will widen the main sequence and increase the stellar lifetime. Stellar temperature and luminosity of the distorted model are shifted toward lower value. The tidal distortion inside the secondary star plays a most important role in the rate of the apsidal motion because of lower compactness. The apsidal motion derived from rotation is larger than the one derived from the general relativity.
    • 基金项目: 国家自然科学基金(批准号: 11463002)、贵州省教育厅自然科学研究项目(批准号: 黔教科2010002号)、中国科学院天体结构与演化重点实验室开放课题(批准号: OP201107, OP201405)、贵州大学自然科学青年基金(批准号: 贵大自青基合字(2013)06号)和贵州大学研究生创新基金(批准号: 研理工2015055)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11463002), the Natural Science Foundation of Education Bureau of Guizhou Province, China (Grant No. 2010002), the Open Foundation of Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Science (Grant Nos. OP201107, OP201405), the Natural Science Foundation for Youth of Guizhou University, China (Grant No. (2013) 06), and the Postgraduate Innovation Fund in Guizhou University, China (Grant No. 2015055).
    [1]

    Huang R Q 2006 Stellar Physics (1st Ed.) (Beijing: China Science and Technology Press) p313 (in Chinese) [黄润乾 2006 恒星物理 (第1版) (北京: 中国科学技术出版社)第313页]

    [2]

    Paczynski B 1971 Annu. Rev. Astron. Astrophys. 9 183

    [3]

    Kippenhahn R, Thomas H C 1970 Proceedings of IAU Colloq.4 Columbus, USA, September 8-11, 1969 p20

    [4]

    Endal A S, Sofia S 1976 Astrophys. J. 210 184

    [5]

    Pinsonneault M H, Kawaler S D, Sofia S, Demarqure P 1989 Astrophys. J. 338 424

    [6]

    Pinsonneault M H, Kawaler S D, Demarqure P 1990 Astrophys. J. Suppl. Ser. 74 501

    [7]

    Pinsonneault M H, Deliyannis C P, Demarqure P 1991 Astrophys. J. 367 239

    [8]

    Song H F, Zhang B, Zhang J, Wu H B, Peng Q H 2003 Chin. Phys. Lett. 20 2084

    [9]

    Wang X M, Zhou X G, Tao Z Y, Yu X D 2013 Acta Phys. Sin. 62 029201 (in Chinese) [王秀明, 周小刚, 陶祖钰, 俞小鼎 2013 62 029201]

    [10]

    Xu Y, Xu W, Ma Y G, Cai X Z, Chen J G, Fan G T, Fan G W, Guo W, Luo W, Pan Q Y, Shen W Q, Yang L F 2009 Chin. Phys. B 18 1421

    [11]

    Liu H L, Liu M Q, Lai X J, Luo Z Q 2007 Chin. Phys. B 16 1637

    [12]

    Huang R Q 2004 Astron. Astrophys. 425 591

    [13]

    Huang R Q 2004 Astron. Astrophys. 422 981

    [14]

    Song H F, Wang J Z, Li Y 2013 Acta Phy. Sin. 62 059701 (in Chinese) [宋汉峰, 王靖洲, 李云 2013 62 059701]

    [15]

    Kopal Z 1959 Close Binary Systems (1st Ed.) (New York: Wiley) p30

    [16]

    Landin N R, Mendes L T S, Vaz P R 2009 Astron. Astrophys. 494 209

    [17]

    Hartkopf W I, Guinan E F, Harmanec P 2006 Proceedings of IAU Symposium Prague, Czech Republic, August 22-25, 2006 p5

    [18]

    Claret A, Giménez A 2010 Astron. Astrophys. 519 A57

    [19]

    Claret A, Giménez A, Wolf M 2010 Astron. Astrophys. 515 A4

    [20]

    Giménez A 1985 Astrophys. J. 297 405

  • [1]

    Huang R Q 2006 Stellar Physics (1st Ed.) (Beijing: China Science and Technology Press) p313 (in Chinese) [黄润乾 2006 恒星物理 (第1版) (北京: 中国科学技术出版社)第313页]

    [2]

    Paczynski B 1971 Annu. Rev. Astron. Astrophys. 9 183

    [3]

    Kippenhahn R, Thomas H C 1970 Proceedings of IAU Colloq.4 Columbus, USA, September 8-11, 1969 p20

    [4]

    Endal A S, Sofia S 1976 Astrophys. J. 210 184

    [5]

    Pinsonneault M H, Kawaler S D, Sofia S, Demarqure P 1989 Astrophys. J. 338 424

    [6]

    Pinsonneault M H, Kawaler S D, Demarqure P 1990 Astrophys. J. Suppl. Ser. 74 501

    [7]

    Pinsonneault M H, Deliyannis C P, Demarqure P 1991 Astrophys. J. 367 239

    [8]

    Song H F, Zhang B, Zhang J, Wu H B, Peng Q H 2003 Chin. Phys. Lett. 20 2084

    [9]

    Wang X M, Zhou X G, Tao Z Y, Yu X D 2013 Acta Phys. Sin. 62 029201 (in Chinese) [王秀明, 周小刚, 陶祖钰, 俞小鼎 2013 62 029201]

    [10]

    Xu Y, Xu W, Ma Y G, Cai X Z, Chen J G, Fan G T, Fan G W, Guo W, Luo W, Pan Q Y, Shen W Q, Yang L F 2009 Chin. Phys. B 18 1421

    [11]

    Liu H L, Liu M Q, Lai X J, Luo Z Q 2007 Chin. Phys. B 16 1637

    [12]

    Huang R Q 2004 Astron. Astrophys. 425 591

    [13]

    Huang R Q 2004 Astron. Astrophys. 422 981

    [14]

    Song H F, Wang J Z, Li Y 2013 Acta Phy. Sin. 62 059701 (in Chinese) [宋汉峰, 王靖洲, 李云 2013 62 059701]

    [15]

    Kopal Z 1959 Close Binary Systems (1st Ed.) (New York: Wiley) p30

    [16]

    Landin N R, Mendes L T S, Vaz P R 2009 Astron. Astrophys. 494 209

    [17]

    Hartkopf W I, Guinan E F, Harmanec P 2006 Proceedings of IAU Symposium Prague, Czech Republic, August 22-25, 2006 p5

    [18]

    Claret A, Giménez A 2010 Astron. Astrophys. 519 A57

    [19]

    Claret A, Giménez A, Wolf M 2010 Astron. Astrophys. 515 A4

    [20]

    Giménez A 1985 Astrophys. J. 297 405

  • [1] 彭卫国, 宋汉峰, 詹琼, 吴兴华, 景江红. 大质量转动沃尔夫-拉叶星的形成及内部核合成研究.  , 2019, 68(21): 219701. doi: 10.7498/aps.68.20191040
    [2] 李志, 宋汉峰, 彭卫国, 王靖洲, 詹琼. 转动双星同步和轨道圆化的物理过程研究.  , 2018, 67(19): 199701. doi: 10.7498/aps.67.20181056
    [3] 江永红, 孙卫国, 张燚, 付佳, 樊群超. 差分收敛法对双原子分子高J值转动谱线的预言.  , 2016, 65(7): 070202. doi: 10.7498/aps.65.070202
    [4] 邰丽婷, 宋汉峰, 王江涛. 临界转动恒星Achernar的斜压结构与引力昏暗的精细研究.  , 2016, 65(4): 049701. doi: 10.7498/aps.65.049701
    [5] 徐保伟, 冯金富, 胡俊华, 刘安, 程相东. 鱼雷豚跳运动及初始转动角速度选取.  , 2015, 64(8): 084501. doi: 10.7498/aps.64.084501
    [6] 张文明, 李雪, 刘爽, 李雅倩, 王博华. 一类非线性相对转动系统的混沌运动及多时滞反馈控制.  , 2013, 62(9): 094502. doi: 10.7498/aps.62.094502
    [7] 宋汉峰, 王靖洲, 李云. 辐射压对非同步转动双星系统洛希势函数的影响.  , 2013, 62(5): 059701. doi: 10.7498/aps.62.059701
    [8] 李海滨, 王博华, 张志强, 刘爽, 李延树. 一类非线性相对转动系统的组合共振分岔与混沌.  , 2012, 61(9): 094501. doi: 10.7498/aps.61.094501
    [9] 李红, 郑斌, 孟庆田. 转动激发对O+HBrOH+Br反应的立体动力学性质的准经典轨线理论研究.  , 2012, 61(15): 153401. doi: 10.7498/aps.61.153401
    [10] 王勇, 郭永新, 吕群松, 刘畅. 非完整映射理论与刚体定点转动的几何描述.  , 2009, 58(8): 5142-5149. doi: 10.7498/aps.58.5142
    [11] 时培明, 蒋金水, 刘彬. 耦合相对转动非线性动力系统的稳定性与近似解.  , 2009, 58(4): 2147-2154. doi: 10.7498/aps.58.2147
    [12] 汪 华, 刘世林, 刘 杰, 王凤燕, 姜 波, 杨学明. N2O+离子A2Σ+电子态高振动能级的转动结构分析.  , 2008, 57(2): 796-802. doi: 10.7498/aps.57.796
    [13] 时培明, 刘 彬, 侯东晓. 一类相对转动非线性动力系统的混沌运动.  , 2008, 57(3): 1321-1328. doi: 10.7498/aps.57.1321
    [14] 石筑一, 张春梅, 童 红, 赵行知, 倪绍勇. 102Ru核振动到转动演化的微观研究.  , 2008, 57(3): 1564-1568. doi: 10.7498/aps.57.1564
    [15] 赵 武, 刘 彬. 相对转动运动学方程的级数解.  , 2005, 54(10): 4543-4548. doi: 10.7498/aps.54.4543
    [16] 方建会, 赵嵩卿. 相对论性转动变质量系统的Lie对称性与守恒量.  , 2001, 50(3): 390-393. doi: 10.7498/aps.50.390
    [17] 杨传路, 朱正和. Ar-HCl转动跃迁光谱线压力加宽截面的理论计算.  , 1999, 48(10): 1852-1857. doi: 10.7498/aps.48.1852
    [18] 阎宏, 常哲, 郭汉英. q变形转动振子模型(Ⅰ)——q振子与双原子分子振动谱.  , 1991, 40(9): 1377-1387. doi: 10.7498/aps.40.1377
    [19] 顾本源, 董碧珍, 郑师海, 杨国桢. 空间平移不变和角度受限下转动不变的特征识别与滤波器的设计.  , 1985, 34(6): 760-765. doi: 10.7498/aps.34.760
    [20] 程檀生;曾谨言. 原子核激发带的转动惯量与奇偶差.  , 1977, 26(3): 243-249. doi: 10.7498/aps.26.243
计量
  • 文章访问数:  6447
  • PDF下载量:  280
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-08
  • 修回日期:  2014-11-27
  • 刊出日期:  2015-04-05

/

返回文章
返回
Baidu
map