搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多晶碲化锌薄膜载能子超快动力学实验研究

贾琳 唐大伟 张兴

引用本文:
Citation:

多晶碲化锌薄膜载能子超快动力学实验研究

贾琳, 唐大伟, 张兴

Experimental study of ultrafast carrier dynamics in polycrystalline ZnTe nanofilm

Jia Lin, Tang Da-Wei, Zhang Xing
PDF
导出引用
  • 利用双波长飞秒激光抽运-探测实验方法测量了掺氮多晶ZnTe薄膜在飞秒激光加热情况下载能子超快动力学过程. 采用包含电子弛豫过程和晶格加热过程的理论模型拟合实验数据, 二者符合得很好. 拟合得到10 ps以内影响掺氮多晶ZnTe薄膜表面超快反射率变化的三个弛豫过程的时间常数均为亚皮秒量级. 其中, 正振幅电子弛豫过程是由电子-光子相互作用引起的载流子扩散和带间载流子冷却过程, 负振幅电子弛豫过程是由缺陷造成的光激载能子的俘获效应引起的, 晶格加热过程主要通过电子-声子耦合过程进行的.
    Zinc telluride, due to its direct band gap and broadband light absorption, has the good application prospects in terahertz devices, solar cells, waveguide devices, and green light emitting diodes. In the photovoltaic field, it is possible to further improve the photoelectron conversion efficiency of multi-junction tandem solar cells by combining zinc telluride with III-V semiconductors. Ultrafast photo-excited carrier dynamics is fundamental to understand photoelectron conversion process of nanofilm solar cells. In this study, the ultrafast energy carrier dynamics of N-doped polycrystalline zinc telluride is investigated by using the femtosecond laser two-color pump-probe method at room temperature. The polycrystalline zinc telluride nanofilm is grown on a 500 μm GaAs (001) substrate via molecular beam epitaxy and doped by using a nitrogen ratio frequency plasma cell. The laser pulses with a central wavelength of 800 nm are divided into pump beam and probe beam by a beam splitter, after which the pump beam passes through a bismuth triborate crystal and its frequency is doubled to 400 nm. The 400 nm pump beam and 800 nm probe beam are focused on the sample collinearly through the same objective lens. Photo-excited carriers will be generated since the excitation photon energy of 400 nm pump beam (3.1 eV) is higher than the band gap of zinc telluride (~ 2.39 eV). The experimental data are analyzed by using the theoretical fitting model which includes energy relaxation processes of electrons and lattice, and the theoretical curves are consistent well with the experimental data. The fitted results show that the three dominated relaxation processes which affect the initial reflectivity recovery are in sub-picosecond time regime. The positive amplitude electron relaxation process is attributed to inter-band carrier cooling and carrier diffusion through electron-photon interactions, and the deduced decay time of this positive amplitude electron relaxation process is about 0.75 ps. The negative amplitude electron relaxation process is characterized as a photo-generated carrier trapping process induced by defects, and the decay time of this process is about 0.61 ps. The lattice heating process is realized through electron-phonon coupling process, and the calculated time constant of the lattice heating is about 0.86 ps.
    • 基金项目: 国家自然科学基金(批准号: 51206094, 51327001, 51336009)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51206094, 51327001, 51336009).
    [1]

    Guo Q X, Kume Y, Fukuhara Y, Tanaka T, Nishio M, Ogawa H, Hiratsuka M, Tani M, Hangyo M 2007 Solid State Commun. 141 188

    [2]

    Chang J H, Takai T, Godo K, Song J S, Koo B H, Hanada T, Yao T 2002 Phys. Status Solidi (b) 229 995

    [3]

    Wu S N, Ding D, Johnson S R, Yu S Q, Zhang Y H 2010 Prog. Photovolt. 18 328

    [4]

    Xia Z L, Fan Z X, Shao J D 2006 Acta Phys. Sin. 55 3007 (in Chinese) [夏志林, 范正修, 邵建达 2006 55 3007]

    [5]

    Wang H D, Ma W G, Guo Z Y, Zhang X, Wang W 2011 Chin. Phys. B 20 040701

    [6]

    Collier C M, Holzman J F 2014 Appl. Phys. Lett. 104 042101

    [7]

    Qi J, Chen X, Yu W, Cadden-Zimansky P, Smirnov D, Tolk N H, Miotkowski I, Cao H, Chen Y P, Wu Y, Qiao S, Jiang Z 2010 Appl. Phys. Lett. 97 182102

    [8]

    Jia L, Ma W G, Zhang X 2014 Appl. Phys. Lett. 104 241911

    [9]

    Wu A Q, Xu X F 2007 Appl. Phys. Lett. 90 251111

    [10]

    Zhu J, Tang D W, Wang W, Liu J, Holub K W, Yang R G 2010 J. Appl. Phys. 108 094315

    [11]

    Ma W G, Wang H D, Zhang X, Wang W 2011 Acta Phys. Sin. 60 064401 (in Chinese) [马维刚, 王海东, 张兴, 王玮 2011 60 064401]

    [12]

    Zhu L D, Sun F Y, Zhu J, Tang D W 2012 Acta Phys. Sin. 61 130512 (in Chinese) [朱丽丹, 孙方远, 祝捷, 唐大伟 2012 61 130512]

    [13]

    Norris P M, Caffrey A P, Stevens R J, Michael Klopf J, Mcleskey Jr J T, Smith A N 2003 Rev. Sci. Instrum. 74 400

    [14]

    Hopkins P E, Stewart D A 2009 J. Appl. Phys. 106 053512

    [15]

    Rast S, Schneider M L, Onellion M, Zeng X H, Si W D, Xi X X, Abrecht M, Ariosa D, Pavuna D, Ren Y H, Lpke G, Perakis I 2001 Phys. Rev. B 64 214505

    [16]

    Wright O B, Gusev V E 1995 Appl. Phys. Lett. 66 1190

  • [1]

    Guo Q X, Kume Y, Fukuhara Y, Tanaka T, Nishio M, Ogawa H, Hiratsuka M, Tani M, Hangyo M 2007 Solid State Commun. 141 188

    [2]

    Chang J H, Takai T, Godo K, Song J S, Koo B H, Hanada T, Yao T 2002 Phys. Status Solidi (b) 229 995

    [3]

    Wu S N, Ding D, Johnson S R, Yu S Q, Zhang Y H 2010 Prog. Photovolt. 18 328

    [4]

    Xia Z L, Fan Z X, Shao J D 2006 Acta Phys. Sin. 55 3007 (in Chinese) [夏志林, 范正修, 邵建达 2006 55 3007]

    [5]

    Wang H D, Ma W G, Guo Z Y, Zhang X, Wang W 2011 Chin. Phys. B 20 040701

    [6]

    Collier C M, Holzman J F 2014 Appl. Phys. Lett. 104 042101

    [7]

    Qi J, Chen X, Yu W, Cadden-Zimansky P, Smirnov D, Tolk N H, Miotkowski I, Cao H, Chen Y P, Wu Y, Qiao S, Jiang Z 2010 Appl. Phys. Lett. 97 182102

    [8]

    Jia L, Ma W G, Zhang X 2014 Appl. Phys. Lett. 104 241911

    [9]

    Wu A Q, Xu X F 2007 Appl. Phys. Lett. 90 251111

    [10]

    Zhu J, Tang D W, Wang W, Liu J, Holub K W, Yang R G 2010 J. Appl. Phys. 108 094315

    [11]

    Ma W G, Wang H D, Zhang X, Wang W 2011 Acta Phys. Sin. 60 064401 (in Chinese) [马维刚, 王海东, 张兴, 王玮 2011 60 064401]

    [12]

    Zhu L D, Sun F Y, Zhu J, Tang D W 2012 Acta Phys. Sin. 61 130512 (in Chinese) [朱丽丹, 孙方远, 祝捷, 唐大伟 2012 61 130512]

    [13]

    Norris P M, Caffrey A P, Stevens R J, Michael Klopf J, Mcleskey Jr J T, Smith A N 2003 Rev. Sci. Instrum. 74 400

    [14]

    Hopkins P E, Stewart D A 2009 J. Appl. Phys. 106 053512

    [15]

    Rast S, Schneider M L, Onellion M, Zeng X H, Si W D, Xi X X, Abrecht M, Ariosa D, Pavuna D, Ren Y H, Lpke G, Perakis I 2001 Phys. Rev. B 64 214505

    [16]

    Wright O B, Gusev V E 1995 Appl. Phys. Lett. 66 1190

  • [1] 张喜生, 晏春愉, 胡李纳, 王景州, 姚陈忠. 低温溶液加工CsPbBr3纳晶薄膜制备钙钛矿太阳电池.  , 2024, 73(22): 228101. doi: 10.7498/aps.73.20241152
    [2] 郑悦, 张宇璇, 孙少华, 丁鹏基, 胡碧涛, 刘作业. 飞秒激光脉冲对N2分子非绝热准直的调控.  , 2023, 72(6): 064203. doi: 10.7498/aps.72.20222112
    [3] 潘鹏晖, 吉鹏飞, 林根, 董希明, 赵晋晖. 飞秒激光加工熔融石英的理论和实验研究.  , 2022, 71(24): 247901. doi: 10.7498/aps.71.20221496
    [4] 焦悦, 陶海岩, 季博宇, 宋晓伟, 林景全. 用于飞秒激光纳米加工的TiO2粒子阵列诱导多种基底表面近场增强.  , 2017, 66(14): 144203. doi: 10.7498/aps.66.144203
    [5] 姚云华, 卢晨晖, 徐淑武, 丁晶新, 贾天卿, 张诗按, 孙真荣. 飞秒激光脉冲整形技术及其应用.  , 2014, 63(18): 184201. doi: 10.7498/aps.63.184201
    [6] 王文亭, 张楠, 王明伟, 何远航, 杨建军, 朱晓农. 飞秒激光烧蚀金属靶的冲击温度.  , 2013, 62(21): 210601. doi: 10.7498/aps.62.210601
    [7] 王文亭, 张楠, 王明伟, 何远航, 杨建军, 朱晓农. 飞秒激光烧蚀固体靶的冲击压强.  , 2013, 62(17): 170601. doi: 10.7498/aps.62.170601
    [8] 刘博文, 胡明列, 宋有建, 柴 路, 王清月. 亚百飞秒高功率掺镱大模面积光子晶体光纤飞秒激光放大器的实验研究.  , 2008, 57(11): 6921-6925. doi: 10.7498/aps.57.6921
    [9] 王晓雷, 张 楠, 赵友博, 李智磊, 翟宏琛, 朱晓农. 飞秒激光激发空气电离的阈值研究.  , 2008, 57(1): 354-357. doi: 10.7498/aps.57.354
    [10] 余本海, 戴能利, 王 英, 李玉华, 季玲玲, 郑启光, 陆培祥. 飞秒激光烧蚀LiNbO3晶体的形貌特征与机理研究.  , 2007, 56(10): 5821-5826. doi: 10.7498/aps.56.5821
    [11] 蔡达锋, 谷渝秋, 郑志坚, 周维民, 焦春晔, 温天舒, 淳于书泰. 飞秒激光-金属薄膜靶相互作用中靶前后超热电子能谱的比较.  , 2007, 56(1): 346-352. doi: 10.7498/aps.56.346
    [12] 李德荣, 吕晓华, 吴 萍, 骆清铭, 陈 伟, 曾绍群. 声光偏转器扫描飞秒激光的时间色散补偿.  , 2006, 55(9): 4729-4733. doi: 10.7498/aps.55.4729
    [13] 李成斌, 贾天卿, 孙海轶, 李晓溪, 徐世珍, 冯东海, 王晓峰, 葛晓春, 徐至展. 飞秒激光对氟化镁烧蚀机理研究.  , 2006, 55(1): 217-220. doi: 10.7498/aps.55.217
    [14] 徐世珍, 贾天卿, 孙海轶, 李晓溪, 程兆谷, 冯东海, 李成斌, 徐至展. 飞秒激光在石英玻璃中诱导微爆炸的理论研究.  , 2005, 54(9): 4146-4150. doi: 10.7498/aps.54.4146
    [15] 刘运全, 张 杰, 梁文锡, 王兆华. 飞秒掺钛蓝宝石激光三倍频理论和实验研究.  , 2005, 54(4): 1593-1598. doi: 10.7498/aps.54.1593
    [16] 孙海轶, 贾天卿, 李晓溪, 徐世珍, 冯东海, 李成斌, 王晓峰, 徐至展. 飞秒激光作用下全向高反膜破坏的激发过程.  , 2005, 54(10): 4736-4740. doi: 10.7498/aps.54.4736
    [17] 王 鹏, 王兆华, 魏志义, 郑加安, 孙敬华, 张 杰. 用SPIDER法测量飞秒激光脉冲的光谱相位.  , 2004, 53(9): 3004-3009. doi: 10.7498/aps.53.3004
    [18] 曾惠丹, 曲士良, 姜雄伟, 邱建荣, 朱从善, 干福熹. 飞秒激光作用下金掺杂硅酸盐玻璃的光致晶化研究.  , 2003, 52(10): 2525-2529. doi: 10.7498/aps.52.2525
    [19] 林景全, 张杰, 李英骏, 陈黎明, 吕铁铮, 滕浩. 原子团簇对飞秒激光的吸收.  , 2001, 50(3): 457-461. doi: 10.7498/aps.50.457
    [20] 邱建荣, 姜雄伟, 朱从善, 干福熹. 飞秒激光作用下光学玻璃和激光玻璃的光致暗化及其ESR研究.  , 2001, 50(5): 871-874. doi: 10.7498/aps.50.871
计量
  • 文章访问数:  6235
  • PDF下载量:  223
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-18
  • 修回日期:  2014-11-18
  • 刊出日期:  2015-04-05

/

返回文章
返回
Baidu
map