-
随着半导体技术的进步, 集成小尺寸绝缘体上硅器件的芯片开始应用到航空航天领域, 使得器件在使用中面临了深空辐射环境与自身常规可靠性的双重挑战. 进行小尺寸器件电离辐射环境下的可靠性试验有助于对器件综合可靠性进行评估. 参照国标GB2689.1-81恒定应力寿命试验与加速寿命试验方法总则进行电应力选取, 对部分耗尽绝缘体上硅n型金属氧化物半导体场效应晶体管进行了电离辐射环境下的常规可靠性研究. 通过试验对比, 定性地分析了氧化物陷阱电荷和界面态对器件敏感参数的影响, 得出了氧化物陷阱电荷和界面态随着时间参数的变化, 在不同阶段对器件参数的影响. 结果表明, 总剂量效应与电应力的共同作用将加剧器件敏感参数的退化, 二者的共同作用远大于单一影响因子.
-
关键词:
- 可靠性 /
- 绝缘体上硅n型金属氧化物半导体场效应晶体管 /
- 总剂量效应 /
- 电应力
With the development of semiconductor technology, the small size silicon-on-insulator metal-oxide-semiconductor field-effect transistor devices start to be applied to the aerospace field, which makes the device in use face dual challenges of the deep space radiation environment and conventional reliability. The small size device reliability test under ionizing radiation environment is conducible to the assessing of the comprehensive reliability of the device. With reference to the national standard GB2689.1-81 constant stress life test and accelerated life test method for the general electric stress, the conventional reliability of the sub-micron type partially-depleted silicon-on-insulator n-channel metal-oxide-semiconductor is studied under the ionizing radiation environment. The experiment is divided into three groups marked by A, B and C. For all the experimental devices, the gate oxide tox=12.5 nm, channel length L=0.8 μm and width W=8 μm, and nominal operating voltage V=3.5 V. We carry out the electrical stress test on A group after irradiation with γ -ray dose up to 1×104 Gy (Si) under the bias condition. Before group B is tested, it has been irradiated by the same dose γ -ray and annealed for one week. Group C is not irradiated by γ -ray before the electric stress test. After irradiation we measure the DC characteristics of the devices: the drain current versus gate voltage (IDS-VGS) and the drain current versus drain voltage (IDS-VDS). The hot carrier injection (HCI) experiment is periodically interrupted to measure the DC characteristics of the device. The sensitive parameters of HCI and irradiation are VT, GM and IDlin, and after HCI stress, all parameters are degenerated. Through the contrast test, we qualitatively analyze the influences of the oxide trap charge and interface state on the sensitive parameters. We obtain the curve of the oxide trap charge and interface state versus time, and the influences of the different stages on device parameters. The results show that the combination of the total dose radiation environment and electrical stress causes the sensitive parameters of the device to rapidly degrade, this combination of these two factors gives rise to bigger effect than a single influence factor.-
Keywords:
- reliability /
- silicon-on-insulator n-channel metal-oxide-semiconductor field-effect transistor /
- total ionizing dose effect /
- electrical stress
[1] Hao Y, Liu H X 2008 Micro-nano MOS Device Reliability and Failure Mechanism (Beijing: Science Press) p1 (in Chinese) [郝跃, 刘红侠 2008 微纳米MOS 器件可靠性与失效机理 (北京: 科学出版社) 第1页]
[2] Wu Z G, Lin R T 2001 Microelectronics 31 1 (in Chinese) [伍志刚, 凌荣堂 2001 微电子学 31 1]
[3] Huang R, Zhang G Y, Li Y X, Zhang X 2005 SOI CMOS Technology and its Application (Beijing: Science Press) pp3-5 (in Chinese) [黄如, 张国艳, 李映雪, 张兴 2005 SOI CMOS技术及其应用(北京: 科学出版社)第3-5页]
[4] Li Z H, Liu H X, Hao Y 2006 Acta Phys. Sin. 55 820 (in Chinese) [李忠贺, 刘红侠, 郝跃 2006 55 820]
[5] Ma X H, Hao Y, Chen H F, Cao Y R, Zhou P J 2006 Acta Phys. Sin. 55 6118 (in Chinese) [马晓华, 郝跃, 陈海峰, 曹艳荣, 周鹏举 2006 55 6118]
[6] Hong G S, Xiao Z Q, Wang X, Zhou M 2012 Microelectronics 42 293 (in Chinese) [洪根深, 肖志强, 王栩, 周淼 2012 微电子学 42 293]
[7] Silvestri M, Gerardin S, Paccagnella A, Faccio F, Gonella L 2008 IEEE Trans. Nucl. Sci. 55 1960
[8] Silvestri M, Gerardin S, Schrimpf R D, Fleetwood D M, Faccio F, Paccagnella A 2009 IEEE Trans. Nucl. Sci. 56 3244
[9] Cui J W, Yu X F, Ren D Y, Lu J 2012 Acta Phys. Sin. 61 026102 (in Chinese) [崔江维, 余学峰, 任迪远, 卢健 2012 61 026102]
[10] Liu F C, Cai X, Luo J, Liu L C, Shi J G 2012 Microelectronics 42 250 (in Chinese) [刘富财, 蔡翔, 罗俊, 刘伦才, 石建刚 2012 微电子学 42 250]
[11] Schwank J R, Shaneyfelt M R, Fleetwood D M, Felix J A, Dodd P E, Philippe P, Véronique F C 2008 IEEE Trans. Nucl. Sci. 55 1833
[12] Oldham T R, McLean F B 2003 IEEE Trans. Nucl. Sci. 50 483
[13] Liu E K, Zhu B S, Luo J S 2003 Semiconductor Physics (Beijing: Publishing House of Electronics Industry) pp111-118 (in Chinese) [刘恩科, 朱秉升, 罗晋升 2003 半导体物理学 (北京: 电子工业出版社) 第111-118页]
-
[1] Hao Y, Liu H X 2008 Micro-nano MOS Device Reliability and Failure Mechanism (Beijing: Science Press) p1 (in Chinese) [郝跃, 刘红侠 2008 微纳米MOS 器件可靠性与失效机理 (北京: 科学出版社) 第1页]
[2] Wu Z G, Lin R T 2001 Microelectronics 31 1 (in Chinese) [伍志刚, 凌荣堂 2001 微电子学 31 1]
[3] Huang R, Zhang G Y, Li Y X, Zhang X 2005 SOI CMOS Technology and its Application (Beijing: Science Press) pp3-5 (in Chinese) [黄如, 张国艳, 李映雪, 张兴 2005 SOI CMOS技术及其应用(北京: 科学出版社)第3-5页]
[4] Li Z H, Liu H X, Hao Y 2006 Acta Phys. Sin. 55 820 (in Chinese) [李忠贺, 刘红侠, 郝跃 2006 55 820]
[5] Ma X H, Hao Y, Chen H F, Cao Y R, Zhou P J 2006 Acta Phys. Sin. 55 6118 (in Chinese) [马晓华, 郝跃, 陈海峰, 曹艳荣, 周鹏举 2006 55 6118]
[6] Hong G S, Xiao Z Q, Wang X, Zhou M 2012 Microelectronics 42 293 (in Chinese) [洪根深, 肖志强, 王栩, 周淼 2012 微电子学 42 293]
[7] Silvestri M, Gerardin S, Paccagnella A, Faccio F, Gonella L 2008 IEEE Trans. Nucl. Sci. 55 1960
[8] Silvestri M, Gerardin S, Schrimpf R D, Fleetwood D M, Faccio F, Paccagnella A 2009 IEEE Trans. Nucl. Sci. 56 3244
[9] Cui J W, Yu X F, Ren D Y, Lu J 2012 Acta Phys. Sin. 61 026102 (in Chinese) [崔江维, 余学峰, 任迪远, 卢健 2012 61 026102]
[10] Liu F C, Cai X, Luo J, Liu L C, Shi J G 2012 Microelectronics 42 250 (in Chinese) [刘富财, 蔡翔, 罗俊, 刘伦才, 石建刚 2012 微电子学 42 250]
[11] Schwank J R, Shaneyfelt M R, Fleetwood D M, Felix J A, Dodd P E, Philippe P, Véronique F C 2008 IEEE Trans. Nucl. Sci. 55 1833
[12] Oldham T R, McLean F B 2003 IEEE Trans. Nucl. Sci. 50 483
[13] Liu E K, Zhu B S, Luo J S 2003 Semiconductor Physics (Beijing: Publishing House of Electronics Industry) pp111-118 (in Chinese) [刘恩科, 朱秉升, 罗晋升 2003 半导体物理学 (北京: 电子工业出版社) 第111-118页]
计量
- 文章访问数: 6327
- PDF下载量: 260
- 被引次数: 0