搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大散射角散斑场中有关相位奇异新特性的研究

宋洪胜 刘桂媛 张宁玉 庄桥 程传福

引用本文:
Citation:

大散射角散斑场中有关相位奇异新特性的研究

宋洪胜, 刘桂媛, 张宁玉, 庄桥, 程传福

New features of the speckle phase singularity produced in large angle scattering

Song Hong-Sheng, Liu Gui-Yuan, Zhang Ning-Yu, Zhuang Qiao, Cheng Chuan-Fu
PDF
导出引用
  • 利用散斑场和参考光的干涉提取散斑场复振幅和相位, 研究了不同散射角下散斑场相位的分布规律以及相位奇异处光波复振幅实部零值线和虚部零值线夹角、光强等值线离心率的统计特性. 在大散射角散斑中发现了一种新的相位奇异现象, 即相位奇异线; 研究了相位在跨越奇异线时的突变规律及涡旋状相位的分布特征, 发现在相位奇异线处存在着呈双曲线或抛物线状的光强等值线.
    Based on the interference patterns of the speckle field and the reference beam recorded by the charge-coupled device, and the digital Fourier transform technique, the complex amplitudes and phases of speckle field produced at different scattering angles are extracted. The phase distribution and the statistical properties at the singular point, such as the angle between two zero-contour lines of real part and imaginary part of the complex amplitude, the eccentricity of the intensity contours, etc. are studied. We find that there are some special properties of phase singularity when the scattering angle is large enough. With the increase of the scattering angle, great changes have taken place in the spatial distributions of the amplitude and the phase, and the probability of the angle between two zero-contour lines of real part and imaginary part is close to a smaller value, and the average eccentricity of the intensity contours around the phase singularity gradually increase. Moreover, the most interesting thing is that the eccentricity is probably greater than 1 in large anger scattering. The phase singular line as a new kind of phase singularity is found at a large scattering angle; the phase mutation rules and the vortex distribution characteristics of the phase on both sides of the phase singular line are investigated, and the hyperbolic or parabolic shape intensity contour around the phase singular line is found.
    • 基金项目: 山东省优秀中青年科学家科研奖励基金(批准号: BS2013DX030)和国家自然科学基金(批准号: 11374193, 11204161)资助的课题.
    • Funds: Project supported by the Promotive Research Foundation for Excellent Young and Middle-aged Scientists of Shandong Province, China (Grant No. BS2013DX030) and the National Natural Science Foundation of China (Grant Nos. 11374193, 11204161).
    [1]

    Goodman J W 1965 Proc. IEEE 53 1688

    [2]

    Dainty J C 1984 Laser Speckle and Related Phenomena (Berlin: Spring-Verlag) pp18, 29

    [3]

    Coulet P, Gil L, Rocca F 1989 Opt. Commun. 73 403

    [4]

    Ren J R, Zhu T, Duan Y S 2008 Commun. Theor. Phys. 50 345

    [5]

    Xu Y, Miroshnichenko A E, Desyatnikov A S 2012 Opt. Lett. 37 4985

    [6]

    Soskin M S, Vasnetsov M V 2001 Prog. Opt. 42 219

    [7]

    Yang Y S, Zhang R F 2014 SIAM J. Math. Anal. 46 484

    [8]

    Plyanskii P V 2004 Proc. SPIE 5477 31

    [9]

    Neshev D N, Dreischuh A, Maleshkov G, Samoc M, Kivshar Y S 2010 Opt. Express 18 18368

    [10]

    Foley J T, Wolf E J 2002 J. Opt. Soc. Am. A 19 2510

    [11]

    Wang W, Yokozeki T, Ishijima R, Wada A, Miyamoto Y, Takeda M, Hanson S G 2006 Opt. Express 14 120

    [12]

    Terhalle B, Richter T, Desyatnikov A S, Neshev D N, Krolikowski W, Kaiser F, Denz C, Kivshar Y S 2008 Phys. Rev. Lett. 101 013903

    [13]

    Desyatnikov A S, Kivshar Y S 2005 Prog. Opt. 47 291

    [14]

    Freund I 1994 J. Opt. Soc. Am. A 11 1644

    [15]

    Berry M V 1978 J. Phys. A 11 27

    [16]

    Baranova N B, Zel' dovich B Y, Mamaev A V, Pilipetslii N F, Shkukov V V 1981 Pis'ma Zh. Eksp. Teor. Fiz. 33 206

    [17]

    Freund I, Shvartsman N, Freilikher V 1993 Opt. Commun. 101 247

    [18]

    Shvartsman N, Freund I 1994 Phys. Rev. Lett. 72 1008

    [19]

    Berry M V, Dennis M R 2000 Proc. R. Soc. Lond. A 456 2059

    [20]

    Wang W, Hanson S G, Miyamoto Y, Takeda M 2005 Phys. Rev. Lett. 94 103902

    [21]

    Wang W, Duan Z, Hanson S G, Miyamoto Y, Takeda M 2006 Phys. Rev. Lett. 96 073902

    [22]

    Dennis M R 2007 Eur. Phys. J. Spec. Top. 145 191

    [23]

    Zhang S, Genack A Z 2007 Phys. Rev. Lett. 99 203901

    [24]

    Egorow R I, Soskin M S, Kessler D A, Freund I 2008 Phys. Rev. Lett. 100 103901

    [25]

    Song H S, Cheng C F, Liu M, Teng S Y, Zhang N Y 2009 Acta Phys. Sin. 58 291 (in Chinese) [宋洪胜, 程传福, 刘曼, 滕树云, 张宁玉 2009 58 291]

    [26]

    Song H S, Cheng C F, Teng S Y, Liu M, Liu G Y, Zhang N Y 2009 Acta Phys. Sin. 58 7654 (in Chinese) [宋洪胜, 程传福, 滕树云, 刘曼, 刘桂媛, 张宁玉 2009 58 7654]

    [27]

    Song H S, Cheng C F, Liu Y Y, Liu G Y, Teng S Y 2010 Chin. Phys. B 19 074204

  • [1]

    Goodman J W 1965 Proc. IEEE 53 1688

    [2]

    Dainty J C 1984 Laser Speckle and Related Phenomena (Berlin: Spring-Verlag) pp18, 29

    [3]

    Coulet P, Gil L, Rocca F 1989 Opt. Commun. 73 403

    [4]

    Ren J R, Zhu T, Duan Y S 2008 Commun. Theor. Phys. 50 345

    [5]

    Xu Y, Miroshnichenko A E, Desyatnikov A S 2012 Opt. Lett. 37 4985

    [6]

    Soskin M S, Vasnetsov M V 2001 Prog. Opt. 42 219

    [7]

    Yang Y S, Zhang R F 2014 SIAM J. Math. Anal. 46 484

    [8]

    Plyanskii P V 2004 Proc. SPIE 5477 31

    [9]

    Neshev D N, Dreischuh A, Maleshkov G, Samoc M, Kivshar Y S 2010 Opt. Express 18 18368

    [10]

    Foley J T, Wolf E J 2002 J. Opt. Soc. Am. A 19 2510

    [11]

    Wang W, Yokozeki T, Ishijima R, Wada A, Miyamoto Y, Takeda M, Hanson S G 2006 Opt. Express 14 120

    [12]

    Terhalle B, Richter T, Desyatnikov A S, Neshev D N, Krolikowski W, Kaiser F, Denz C, Kivshar Y S 2008 Phys. Rev. Lett. 101 013903

    [13]

    Desyatnikov A S, Kivshar Y S 2005 Prog. Opt. 47 291

    [14]

    Freund I 1994 J. Opt. Soc. Am. A 11 1644

    [15]

    Berry M V 1978 J. Phys. A 11 27

    [16]

    Baranova N B, Zel' dovich B Y, Mamaev A V, Pilipetslii N F, Shkukov V V 1981 Pis'ma Zh. Eksp. Teor. Fiz. 33 206

    [17]

    Freund I, Shvartsman N, Freilikher V 1993 Opt. Commun. 101 247

    [18]

    Shvartsman N, Freund I 1994 Phys. Rev. Lett. 72 1008

    [19]

    Berry M V, Dennis M R 2000 Proc. R. Soc. Lond. A 456 2059

    [20]

    Wang W, Hanson S G, Miyamoto Y, Takeda M 2005 Phys. Rev. Lett. 94 103902

    [21]

    Wang W, Duan Z, Hanson S G, Miyamoto Y, Takeda M 2006 Phys. Rev. Lett. 96 073902

    [22]

    Dennis M R 2007 Eur. Phys. J. Spec. Top. 145 191

    [23]

    Zhang S, Genack A Z 2007 Phys. Rev. Lett. 99 203901

    [24]

    Egorow R I, Soskin M S, Kessler D A, Freund I 2008 Phys. Rev. Lett. 100 103901

    [25]

    Song H S, Cheng C F, Liu M, Teng S Y, Zhang N Y 2009 Acta Phys. Sin. 58 291 (in Chinese) [宋洪胜, 程传福, 刘曼, 滕树云, 张宁玉 2009 58 291]

    [26]

    Song H S, Cheng C F, Teng S Y, Liu M, Liu G Y, Zhang N Y 2009 Acta Phys. Sin. 58 7654 (in Chinese) [宋洪胜, 程传福, 滕树云, 刘曼, 刘桂媛, 张宁玉 2009 58 7654]

    [27]

    Song H S, Cheng C F, Liu Y Y, Liu G Y, Teng S Y 2010 Chin. Phys. B 19 074204

  • [1] 杨春林. 散斑场的随机波数及其参量非线性效应.  , 2024, 73(2): 024204. doi: 10.7498/aps.73.20231235
    [2] 尹君, 王少飞, 张俊杰, 谢佳谌, 陈宏宇, 贾源, 胡徐锦, 于凌尧. 基于动态散斑照明的宽场荧光显微技术理论研究.  , 2021, 70(23): 238701. doi: 10.7498/aps.70.20211022
    [3] 杨春林. 等离子体中散斑光场的传输特性.  , 2018, 67(8): 085201. doi: 10.7498/aps.67.20171795
    [4] 陈明徕, 罗秀娟, 张羽, 兰富洋, 刘辉, 曹蓓, 夏爱利. 基于全相位谱分析的剪切光束成像目标重构.  , 2017, 66(2): 024203. doi: 10.7498/aps.66.024203
    [5] 刘桂媛, 宋洪胜, 张宁玉, 程传福. 飞秒激光在锥形镀膜探针传输中相位奇异的研究.  , 2015, 64(2): 024203. doi: 10.7498/aps.64.024203
    [6] 宋洪胜, 庄桥, 刘桂媛, 秦希峰, 程传福. 菲涅耳深区散斑强度统计特性及演化.  , 2014, 63(9): 094201. doi: 10.7498/aps.63.094201
    [7] 郑伟花, 贾虎. 水下高斯界面背向散射超声散斑场的相位奇异.  , 2014, 63(5): 054301. doi: 10.7498/aps.63.054301
    [8] 陈小艺, 刘曼, 李海霞, 张美娜, 宋洪胜, 滕树云, 程传福. 弱散射体产生的菲涅耳极深区散斑场相位涡旋演化的实验研究.  , 2012, 61(7): 074201. doi: 10.7498/aps.61.074201
    [9] 王峰, 彭晓世, 梅鲁生, 刘慎业, 蒋小华, 丁永坤. 基于速度干涉仪的冲击波精密调速实验技术研究.  , 2012, 61(13): 135201. doi: 10.7498/aps.61.135201
    [10] 常宏, 杨福桂, 董磊, 王安廷, 谢建平, 明海. 激光光斑形状和尺寸对扫描显示中散斑对比度的影响.  , 2010, 59(7): 4634-4639. doi: 10.7498/aps.59.4634
    [11] 刘曼, 程传福, 宋洪胜, 刘桂媛, 滕树云. 方形环孔和圆环孔形成的散斑场及相位奇异特性的理论分析和实验验证.  , 2010, 59(2): 964-972. doi: 10.7498/aps.59.964
    [12] 宋洪胜, 程传福, 滕树云, 刘曼, 刘桂媛, 张宁玉. 参考光干涉提取复振幅的散斑统计函数的实验研究.  , 2009, 58(11): 7654-7661. doi: 10.7498/aps.58.7654
    [13] 宋洪胜, 程传福, 刘曼, 滕树云, 张宁玉. 散斑场相位涡旋及其传播特性的实验研究.  , 2009, 58(6): 3887-3896. doi: 10.7498/aps.58.3887
    [14] 刘曼, 程传福, 宋洪胜, 滕树云, 刘桂媛. 高斯相关随机表面光散射散斑场相位奇异及其特性的理论研究.  , 2009, 58(8): 5376-5384. doi: 10.7498/aps.58.5376
    [15] 郑晓泉, 谢安生, 李盛涛. 发展在XLPE电缆绝缘内外侧的电树枝.  , 2007, 56(9): 5494-5501. doi: 10.7498/aps.56.5494
    [16] 朱鸿茂, 吴艳阳, 黄忠文, 王寅观, 朱 成. 一类弱散射界面背向散射超声散斑一阶统计特性.  , 2003, 52(6): 1438-1443. doi: 10.7498/aps.52.1438
    [17] 姚焜, 许广宇, 郭光灿, 彭虎, 周佩玲. 双光束干涉产生的动态散斑.  , 1992, 41(2): 238-243. doi: 10.7498/aps.41.238
    [18] 伍小平, 何世平, 李志超. 空间散斑的运动规律(续)——物表面位移微分量的影响.  , 1983, 32(8): 973-981. doi: 10.7498/aps.32.973
    [19] 王迺权, 张洪钧, 鄂云. 偏振激光散斑的积分光强的统计特性.  , 1983, 32(1): 124-132. doi: 10.7498/aps.32.124
    [20] 伍小平, 何世平, 李志超. 空间散斑的运动规律.  , 1980, 29(9): 1142-1150. doi: 10.7498/aps.29.1142
计量
  • 文章访问数:  6605
  • PDF下载量:  473
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-11
  • 修回日期:  2014-12-09
  • 刊出日期:  2015-04-05

/

返回文章
返回
Baidu
map